Contents

Part 1: Getting Started

7 Quick Start Guide
9 1248 Front Panel
10 1248 Rear Panel
11 8M Front Panel
12 8M Rear Panel
13 16A Front Panel
14 16A Rear Panel
15 MOTU AVB Switch
17 MOTU AVB Control Web App
27 About Your MOTU AVB Audio Interface
31 Packing List and System Requirements
33 Software Installation
37 Hardware Installation

Part 2: Using your MOTU interface

57 Presets
61 The Front Panel LCD
65 Working with Host Audio Software
73 Mixer Effects
79 Networking

Part 3: Appendices

87 Troubleshooting
89 Audio Specifications
95 Mixer Schematics
99 Updating Firmware
101 OSC Support
103 Index
About the Mark of the Unicorn License Agreement and Limited Warranty on Software

TO PERSONS WHO PURCHASE OR USE THIS PRODUCT: carefully read all the terms and conditions of the "click-wrap" license agreement presented to you when you install the software. Using the software or this documentation indicates your acceptance of the terms and conditions of that license agreement.

Mark of the Unicorn, Inc. ("MOTU") owns both this program and its documentation. Both the program and the documentation are protected under applicable copyright, trademark, and trade-secret laws. Your right to use the program and the documentation are limited to the terms and conditions described in the license agreement.

Reminder of the terms of your license

This summary is not your license agreement, just a reminder of its terms. The actual license can be read and printed by running the installation program for the software.

Mark of the Unicorn, Inc. ("MOTU") owns both this program and its documentation. Both the program and the documentation are protected under applicable copyright, trademark, and trade-secret laws. Your right to use the program and the documentation are limited to the terms and conditions described in the license agreement.

Limited Warranty on Hardware

Mark of the Unicorn, Inc. and S&S Research ("MOTUS&S") warrant this equipment against defects in materials and workmanship for a period of TWO (2) YEARS from the date of original retail purchase. This warranty applies only to hardware products; MOTU software is licensed and warranted pursuant to separate written statements.

If you discover a defect, first write or call Mark of the Unicorn at (617) 576-2760 to obtain a Return Merchandise Authorization Number. No service will be performed on any product returned without prior authorization. MOTU will, at its option, repair or replace the product at no charge to you, provided you return it during the warranty period, with transportation charges prepaid, to Mark of the Unicorn, Inc., 1280 Massachusetts Avenue, MA 02138. You must use the product's original packing material for shipment, and insure the shipment for the value of the product. Please include your name, address, telephone number, a description of the problem, and the original, dated bill of sale with the returned unit and print the Return Merchandise Authorization Number on the outside of the box below the shipping address.

This warranty does not apply if the equipment has been damaged by accident, abuse, misuse, or misapplication; has been modified without the written permission of MOTU, or if the product serial number has been removed or defaced.

ALL IMPLIED WARRANTIES, INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO TWO (2) YEARS FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF THIS PRODUCT.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. NO MOTUS&S dealer, agent, or employee is authorized to make any modification, extension, or addition to this warranty.

MOTUS&S ARE NOT RESPONSIBLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY BREACH OF WARRANTY, OR UNDER ANY LEGAL THEORY, INCLUDING LOST PROFITS, DOWNTIME, GOODWILL, DAMAGE OR REPLACEMENT OF EQUIPMENT AND PROPERTY AND COST OF REPROGRAMMING, OR REPRODUCING ANY PROGRAM OR DATA STORED IN OR USED WITH MOTUS&S PRODUCTS.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may have other rights which vary from state to state.

MOTU, AudioDesk, Mark of the Unicorn and the unicorn silhouette logo are trademarks of Mark of the Unicorn, Inc.

Thunderbolt and the Thunderbolt logo are trademarks of Intel Corporation in the U.S. and/or other countries.

This equipment has been type tested and found to comply with the limits for a class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy, and, if not installed and used in accordance with this instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause interference to radio or television equipment reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by any of the following means:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Plug the equipment into an outlet on a circuit different from that to which the receiver is connected.

If necessary, you can consult a dealer or experienced radio/television technic for additional assistance.

PLEASE NOTE: only equipment certified to comply with Class B (computer input/output devices, terminals, printers, etc.) should be attached to this equipment, and must have shielded interface cables in order to comply with the Class B FCC limits on RF emissions.

WARNING: changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
Part 1

Getting Started
Quick Start Guide

Thank you for purchasing a MOTU AVB interface! Follow these easy steps to get started quickly.

1. Download and run the MOTU AVB Installer or MOTU AVB USB Installer.exe found here:
 http://www.motu.com/avb

2. (Optional) For access to your MOTU interface from your iPad or iPhone, download the MOTU AVB Discovery app from the Apple App Store.
 ☛ Your iPhone and iPad must be on the same WiFi network as your computer.

3. Connect your MOTU interface to your computer with a USB cable (included) or Thunderbolt cable (sold separately). If you have a Thunderbolt-equipped Mac running OS X Yosemite (10.10) or later, you can alternately connect your MOTU interface to the Mac’s Ethernet port with a standard CAT-5e or CAT-6 Ethernet cable (sold separately).

4. Switch on your MOTU interface.

5. Open the MOTU AVB Control web app by doing one of the following:
 - If you have a Mac, choose your MOTU interface from the MOTU AVB Discovery app menu.
 - If you have a PC, launch the MOTU AVB Web UI Setup shortcut found on the Windows desktop or in Start menu> All Programs> MOTU.
 - From your iPad or iPhone, launch the MOTU AVB Discovery app, and tap your interface.
 - You should now see the MOTU AVB Control web app in your browser, as shown on page 18. If not, visit Appendix A, “Troubleshooting” (page 87).
 - For advanced network options, and device discovery from any modern browser, see chapter 9, “Networking” (page 79).

6. Choose a preset from the Quick Setup.

<table>
<thead>
<tr>
<th>Preset</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio interface</td>
<td>Operate as a standard audio interface.</td>
</tr>
<tr>
<td>Stand-alone mixer</td>
<td>Operate as a stand-alone mixer, where all inputs are mixed to the main outs and monitor outs.</td>
</tr>
<tr>
<td>Interface + mixer</td>
<td>A combination of the above two presets.</td>
</tr>
<tr>
<td>Live recording with monitor mixing</td>
<td>Record a live concert or recording session, with a full monitor mix.</td>
</tr>
<tr>
<td>Stage I/O</td>
<td>Route audio inputs from one AVB interface to another, through Ethernet cabling.</td>
</tr>
<tr>
<td>Studio Input Expander</td>
<td>Routes expansion unit’s physical inputs to main system using AVB network streams</td>
</tr>
<tr>
<td>Studio Output Expander</td>
<td>Routes main system’s AVB network streams to physical outputs on expansion unit.</td>
</tr>
<tr>
<td>Optical Converter</td>
<td>Multi-channel analog-to-digital converter</td>
</tr>
</tbody>
</table>
1248 Front Panel

1. MAIN OUT volume control. This setting, along with all front panel settings, can also be adjusted from the MOTU AVB Control web app.

2. MONITOR OUT volume control.

3. PHONE OUTPUTS with volume control.

4. GUITAR INPUTS with volume control. These are high-impedance guitar inputs that provide authentic guitar amp volume response and feel.

5. MIC INPUT preamp gain, switchable 48V phantom power, and optional -20 dB pad switches for each mic input. The Precision Digital Trim™ knob provides 63 dB of preamp gain. Turn the knob to see the gain adjustments on a large-scale, horizontal meter.

6. ANALOG INPUT METERS for the four mic inputs, two guitar inputs, and eight balanced (TRS) quarter-inch inputs on the rear panel.

7. ANALOG OUTPUT METERS for the eight balanced (TRS) quarter-inch outputs, main outs, and monitor outs.

8. S/PDIF DIGITAL METERS (stereo input and output).

9. ADAT OPTICAL METERS. At 1x sample rates (44.1 or 48 kHz), there are sixteen channels of input and output. At 2x (88.2 or 96 kHz), there are eight channels.

10. The CLOCK section displays the current operating sample rate and clock mode (source) for the unit.

11. POWER SWITCH: Thunderbolt, AVB, and USB are "plug-and-play" protocols. That means you can turn the 1248 off and back on without restarting your computer.

12. The multi-purpose backlit LCD displays level meters for all inputs and outputs. It can also show device settings and network information, using the knobs to the left.

13. Push SELECT to enter the LCD menu. Turn SELECT to scroll through menu options. Push again to descend into the submenus, if applicable. To choose the current setting, push SELECT a third time. Push BACK to return to the previous menu level and do so repeatedly to exit the menu altogether.

14. Push ID to display network settings for the device, including its IP address.

15. Push TRIM to enter trim mode. In this mode, the LCD numerically displays gain settings for eight channels at a time. Use the front panel knobs to adjust each channel, from left to right, starting with the MAIN volume knob.
1. The 1248 is equipped with an auto-switching international power supply.

2. BNC word clock jacks. Use them for a variety of applications, such as digital transfers with devices that cannot slave to the clock supplied by their digital I/O connection with the 1248.

3. These ADAT optical “lightpipe” jacks provide 16 channels of 24-bit ADAT optical digital I/O at 1x sample rates (44.1 or 48 kHz) and 8 channels at 2x sample rates (88.2 or 96 kHz). They are disabled at higher sample rates. The IN and OUT ports on the right provide channels 1-8 (or 1-4 at 2x sample rates), and the left-hand ports provide channels 9-16 (or 5-8 at 2x sample rates).

4. These jacks provide stereo, 24-bit S/PDIF digital input and output at all supported sample rates (up to 96 kHz). The input provides sample rate conversion, as explained in “S/PDIF with sample rate conversion” on page 46.

5. The MONITOR OUT pair provides auxiliary stereo analog output for secondary studio monitors, or any other desired destination. These connectors are balanced (TRS) quarter-inch connectors that can also accept an unbalanced plug (with the ring disconnected). Control volume from the MOTU AVB Control web app or from the front panel volume control.

6. The MAIN OUT pair provides stereo analog output for primary (powered) studio monitors or PA speakers, or any other desired destination. These connectors are balanced (TRS) quarter-inch connectors that can also accept an unbalanced plug (with the ring disconnected). Control volume from the web app or from the front panel volume control.

7. The 1248’s eight analog outputs are balanced (TRS) quarter-inch connectors that can also accept an unbalanced plug (with the ring disconnected). The output trim can be adjusted from the Output Setting section of the Device Tab in the MOTU AVB Control web app software.

8. These eight analog inputs are balanced (TRS) quarter-inch connectors that can also accept an unbalanced plug (with the ring disconnected) that let you adjust input level in 1 dB increments from the included MOTU AVB Control web app software.

9. Connect up to four microphones here. Each input provides individual preamp gain (+63 dB), switchable 48V phantom power, and an optional -20 dB pad.

10. Connect the 1248 to the computer here via either Thunderbolt or USB 2.0, using a standard Thunderbolt or USB cable. For details, see “Setup for multiple Thunderbolt and USB interfaces” on page 42.

11. This AVB ethernet port provides industry standard IEEE 802.1 network connectivity to other network devices. Examples include:
 - Another 1248 or any other MOTU AVB-equipped audio interface, such as the 1248, 8M, 16A, 24Ai, 24Ao, 112D, Monitor 8, etc.
 - A standard ethernet hub or Wi-Fi router (for internet connection and communication with the MOTU AVB Control web app software).
 - A standard AVB Ethernet switch for high-speed, low-latency, high-capacity audio connectivity to an AVB audio network.
 - A recent-generation Mac (any Mac with a Thunderbolt port) running OS X Yosemite (10.10) or later. This allows you to operate the 1248 as an audio interface over Ethernet.
8M Front Panel

1. HEADPHONE JACK with volume control.
2. MIC INPUT preamp gain, switchable 48V phantom power, and switchable -20 dB pad for each mic input. The Precision Digital Trim™ knob provides 53 dB of preamp gain adjustment over a wide range of meter readings.
3. INPUT METERS for the eight mic inputs. If the 8M's V-Limit™ feature is engaged for a mic input, and V-Limit kicks in, you'll see a compression meter extend downwards from the input meter.
4. OUTPUT METERS for the eight balanced TRS analog outputs.
5. ADAT OPTICAL input and output metering. At 1x sample rates (44.1 or 48 kHz), there are sixteen channels of input and output. At 2x (88.2 or 96 kHz), there are eight channels.
6. The CLOCK section displays the current operating sample rate and clock mode (source) for the unit.
7. POWER SWITCH: Thunderbolt, AVB, and USB are "plug-and-play" protocols. That means you can turn the 8M off and back on without restarting your computer.
8. The multi-purpose backlit LCD displays level meters for all inputs and outputs. It can also show device settings and network information, using the knobs to the left.
9. Push SELECT to enter the LCD menu. Turn SELECT to scroll through menu options. Push again to descend into the submenus, if applicable. To choose the current setting, push SELECT a third time. Push BACK to return to the previous menu level, and do so repeatedly to exit the menu altogether.
10. Push TRIM to enter trim mode. In this mode, the LCD numerically displays gain settings for eight channels at a time.
11. Push ID to display network settings for the device, including its IP address.
1. The 8M is equipped with an auto-switching international power supply.

2. BNC word clock jacks. Use them for a variety of applications, such as digital transfers with devices that cannot slave to the clock supplied by their digital I/O connection with the 8M.

3. These ADAT optical "lightpipe" jacks provide 16 channels of 24-bit ADAT optical digital I/O at 1x sample rates (44.1 or 48 kHz) and 8 channels at 2x sample rates (88.2 or 96 kHz). They are equipped with very high-quality 24-bit 192 kHz converters. The output trim can be adjusted from the Output Setting section of the Device Tab in the MOTU AVB Control web app software.

4. The 8M’s eight analog outputs are balanced TRS quarter-inch connectors that can also accept an unbalanced plug (with the ring disconnected). They are equipped with very high-quality 24-bit 192 kHz converters. The output trim can be adjusted from the Output Setting section of the Device Tab in the MOTU AVB Control web app software.

5. These XLR/TRS combo jacks accept either a mic cable or a quarter-inch cable, balanced or unbalanced, from a guitar or line input. Use the front panel controls to adjust individual preamp gain, 48V phantom power, and an optional -20 dB pad for each mic input. The quarter-inch plug is equipped with a high-impedance circuit for guitar input.

6. Connect the 8M to the computer here via either Thunderbolt or USB 2.0, using a standard Thunderbolt or USB cable. For details, see “Setup for multiple Thunderbolt ports” on page 42.

7. This AVB ethernet port provides industry standard IEEE 802.3 network connectivity to other network devices. Examples include:
 - Another 8M or any other MOTU AVB-equipped audio interface, such as the 1248, 8M, 16A, 24Ai, 24Ao, 112D, Monitor 8, etc.
 - A standard ethernet hub or Wi-Fi router (for internet connection and communication with the MOTU AVB Control web app software).
 - A standard AVB Ethernet switch for high-speed, low-latency, high-capacity audio connectivity to an AVB audio network.
 - A recent-generation Mac (any Mac with a Thunderbolt port) running OS X Yosemite (10.10) or later. This allows you to operate the 8M as an audio interface over Ethernet.
16A Front Panel

1. ANALOG INPUT METERS for the sixteen balanced (TRS) quarter-inch inputs.
2. ANALOG OUTPUT METERS for the sixteen balanced (TRS) quarter-inch outputs.
3. ADAT OPTICAL input and output metering. At 1x sample rates (44.1 or 48 kHz), there are sixteen channels of input and output. At 2x (88.2 or 96 kHz), there are eight channels.
4. The CLOCK section displays the current operating sample rate and clock mode (source) for the unit.
5. POWER SWITCH: Thunderbolt, AVB, and USB are “plug-and-play” protocols. That means you can turn the 16A off and back on without restarting your computer.
6. Push SEL (select) to enter the LCD menu. Push the ARROW buttons to scroll through menu options. Push again to descend into the submenus, if applicable. To choose the current setting, push SELECT a third time. Push BACK to return to the previous menu level, and do so repeatedly to exit the menu altogether.
7. Push ID to display network settings for the device, including its IP address.
1. The 16A is equipped with an auto-switching international power supply.

2. BNC word clock jacks. Use them for a variety of applications, such as digital transfers with devices that cannot slave to the clock supplied by their digital I/O connection with the 16A.

3. These ADAT optical “lightpipe” jacks provide 16 channels of 24-bit ADAT optical digital I/O at 1x sample rates (44.1 or 48 kHz) and 8 channels at 2x sample rates (88.2 or 96 kHz). They are disabled at higher sample rates. The IN and OUT ports on the right provide channels 1–8 (or 1–4), and the left-hand ports provide channels 9–16 (or 5–8).

4. The 16A’s sixteen analog outputs are balanced TRS quarter-inch connectors that can also accept an unbalanced plug (with the ring disconnected). The output trim can be adjusted from the Output Setting section of the Device Tab in the MOTU AVB Control web app software.

5. These sixteen analog inputs are balanced TRS quarter-inch connectors that can also accept an unbalanced plug. Use with line level signals up to +24 dBu, including synthesizers, drum machines, effects processors, etc. These inputs are also equipped with the 16A’s Precision Digital Trim™ feature digitally controlled analog trims that let you adjust input level in 1 dB increments from the included MOTU AVB Control web app software.

6. Connect the 16A to the computer here via either Thunderbolt or USB 2.0, using a standard Thunderbolt or USB cable for details, see “Setup for multiple Thunderbolt and USB interfaces” on page 42.

7. This AVB ethernet port provides industry standard IEEE 802.3 network connectivity to other network devices. Examples include:
 - Another 16A or any other MOTU AVB-equipped audio interface, such as the 1248, 8M, 16A, 24Ai, 24Ao, 112D, Monitor 8, etc.
 - A standard ethernet hub or Wi-Fi router (for internet connection and communication with the MOTU AVB Control web app software).
 - A standard AVB Ethernet switch for high-speed, low-latency high-capacity audio connectivity to an AVB audio network.
 - A recent-generation Mac (any Mac with a Thunderbolt port) running OS X Yosemite (10.10) or later. This allows you to operate the 16A as an audio interface over Ethernet.
MOTU AVB Switch

1. Use these 1 gigabit AVB NETWORK ports to connect any of the following:
 - MOTU AVB interfaces (1248, 8M and 16A)
 - Another MOTU AVB Switch (to extend the network)
 - A 3rd-party AVB switch
 - An Ethernet device, Wi-Fi router or Ethernet network
 - A third-party AVB device

2. This standard Ethernet port can be used to connect a standard 10/100/1Gb Ethernet device, Wi-Fi router or Ethernet network. DO NOT connect AVB devices to this port; it does not support AVB.

3. Connect the included 15V DC power supply here. Alternately, you can use any power supply that conforms to the indicated specifications.

4. The front panel LEDs indicate signal activity for each port. When a 1 gigabit device is connected to a port, the 1 Gb LED illuminates.

 NOTE: When making network connections, use shielded CAT-5e or CAT-6 cables (a higher grade cable). For local connections, patch cables can be used but will reduce the maximum total cable run length.

The MOTU AVB Switch provides deep functionality that goes beyond a standard Ethernet switch.

- No configuration is necessary. The switch configures itself and manages all device discovery, configuration, and system resource allocation.
- The switch establishes and maintains extremely accurate timing and synchronization among all connected devices.
- The switch negotiates audio routing throughout the network and guarantees that audio integrity is maintained, regardless of external (non-AVB) network traffic.
- The switch consolidates audio, synchronization, and control together.

For more information, see chapter 9, “Networking” (page 79).
MOTU AVB Control Web App

OVERVIEW
MOTU AVB Control is a web app that gives you complete control over your MOTU audio interface. If you have several MOTU AVB interfaces networked together, such as the 1248, 16A and 8M, you can control them all. If you are working with a large-scale network of many MOTU AVB interfaces, you can access and control any device on the network.

IT’S NOT ON YOUR HARD DRIVE
The MOTU AVB Control web app is served from the MOTU interface hardware itself, therefore it is not an application on your computer’s hard drive. Instead, access it by using the MOTU AVB Discovery app for Mac, the MOTU AVB WebUI Setup for Windows or through your web browser by typing your MOTU device’s IP Address.

USE YOUR FAVORITE WEB BROWSER
The MOTU AVB Control web app runs in any modern web browser on any device connected to your MOTU interface, either directly or wirelessly through a WiFi network. You can use any device you wish: a desktop computer, laptop, iPad, tablet, iPhone or smart phone. If it can run a web browser, it can run the web app. You can use any browser you prefer: Chrome, Firefox, Safari, IE 11 etc. The latest versions are strongly recommended.

CONTROL FROM MULTIPLE DEVICES
You can run the web app on multiple host devices simultaneously.

MAKE HARDWARE AND NETWORK CONNECTIONS
Connect your MOTU interface to your computer or laptop with a Thunderbolt or USB cable. Make sure your iPad, iPhone, tablet or smartphone is connected to the same WiFi network as your computer or device. You can use any network connection scenario explained in “Setup for web app control” on page 43.

LAUNCHING THE WEB APP
To launch the web app, do any of the following:

■ If you have a Mac, choose your MOTU interface from the MOTU AVB Discovery app menu, as shown below. If you are on Windows, launch the MOTU AVB WebUI Setup shortcut on the Windows desktop or in Start menu> All Programs> MOTU.

■ From your iPad or iPhone, launch the MOTU AVB Discovery app.

■ In your favorite web browser, type this URL: localhost:1280. (This URL requires a Thunderbolt or USB connection to your MOTU interface.)

■ If the Ethernet port on your interface is connected to your Ethernet or Wi-Fi network, type the unit’s IP address (see below) into your browser.

You should now see the MOTU AVB Control web app in your browser, as shown on page 18. If not visit Appendix A, “Troubleshooting” page (87).

Obtaining your MOTU device’s IP address
On the front panel of the interface, push the ID knob or button once. The LCD now displays the unit’s IP address, which should look something like this: “IP Address: 192.168.1.209”.

USE YOUR FAVORITE WEB BROWSER
The MOTU AVB Control web app runs in any modern web browser on any device connected to your MOTU interface, either directly or wirelessly through a WiFi network. You can use any device you wish: a desktop computer, laptop, iPad, tablet, iPhone or smart phone. If it can run a web browser, it can run the web app. You can use any browser you prefer: Chrome, Firefox, Safari, IE 11 etc. The latest versions are strongly recommended.

CONTROL FROM MULTIPLE DEVICES
You can run the web app on multiple host devices simultaneously.

RUN THE INSTALLER, GET THE APP
Visit www.motu.com/avb to get the latest MOTU AVB installer and run it on your computer to install the MOTU AVB Discovery app (Mac) or MOTU AVB WebUI Setup (Windows) and other software elements. Visit the Apple App Store to download the discovery app onto your iPad or iPhone.
1. If you have two or more MOTU AVB interfaces, the Device list lets you choose the one you are currently controlling with the web app.

2. The Aux Mixing tab lets you view each Aux bus in the mixer, by itself.

3. The Mixing tab gives you access to the mixing and DSP in the interface.

4. The Routing tab displays a grid matrix, where you can make direct connections between inputs and outputs, your computer, the mixer, and network audio streams, if networked interfaces are connected.

5. The Device tab has settings for the hardware itself, such as mic input phantom power and preamp gain.

6. Expands and collapses the sidebar.

7. Lets you create, save, recall and manage presets for your MOTU AVB interface. These presets capture and recall the complete state of the device (all settings in all tabs).

8. Choose the desired sample rate.

9. The Quick Setup button prompts factory presets used to configure your interface for a specific application. See Chapter 6 for details.

10. Click to rename the interface. To restore the default name, delete the current name.

11. Click this device ID button to identify the unit you are currently viewing and controlling with the web app software. The front panel LCD on the hardware itself will flash the name of the device, and its name will also flash in the Device list (1).

12. If an update is available for your device, and the computer you are viewing it from is connected to the internet, you'll be notified here. Click More Info to learn what's new and start the update process. Firmware updating requires a network connection. Click this button to choose the current interface (1) as the master clock source.

13. Choose the clock source from the Clock Mode menu. Your MOTU device will resolve its digital clock to this master source. See “Synchronization” on page 51 and other clock-related topics on pages 52-53.

14. Indicates that the current device (1) is successfully resolved to its chosen Clock Mode source (13). If it cannot lock for some reason, this icon flashes red. Check your chosen clock source, cables, etc.

15. The Word Clock output on the your MOTU interface can operate as an OUT or a THRU. In addition, at higher sample rates, it can either follow the system clock or operate at the corresponding 1x sample rate. For details, see “Daisy-chaining word clock” on page 53.

16. If you have multiple MOTU AVB interfaces, one of them may serve as a master clock source for the network. Click this button to choose the current interface (1) as the master clock source.

17. The Input Settings section provides gain settings for inputs, plus phase invert for mic and guitar inputs, if any. You can also toggle the 48V phantom power and -20 dB pad for the mic inputs.

18. The Output Settings section lets you adjust the trim for any output or output pair which supports it. Phones, Main, and Monitor outputs provide full-volume control. Analog outputs provide calibration control (-24 to 0 dB).

19. The 8M mic inputs have these additional input settings. See “8M mic/guitar input meters with V-Limit™ compressor” on page 61 and “Soft Clip™” on page 45.
19. In the Input/Output Banks sections, you can disable banks that you are not using. This hides them from the routing tab and mixer to simplify operation and conserve DSP power.

20. AVB is IEEE's Audio Video Bridging Ethernet standard for high-bandwidth, low-latency audio streaming over Ethernet. If your 1248, 8M or 16A is connected to a 2nd MOTU AVB interface through its network port, or to an AVB switch for access to an extended AVB network, you can stream audio channels to other destinations on the network. See chapter 9, "Networking" (page 79).

21. If you have AVB network input streams enabled, connect them to the output streams of other devices on the network here.

22. In the Computer Setup section, you can specify how many audio channels you would like to be able to stream to and from your computer, up to 128 channels each way, simultaneously. For example, the 1248 has 32 physical inputs and 34 outputs, so to be able to access all individually, you should configure these two settings for 32 and 34, respectively. Map them as desired in the routing tab (page 20). You can specify a higher number of audio channels if you will be streaming additional channels to and from the AVB network or the mixer.

23. The Computer Volume Controls setting is only available when your MOTU interface is connected to a Mac using Thunderbolt. When enabled, this option allows you to control the volume of from Computer channels 1-2 using the volume controls on your Mac’s keyboard.

24. Use these buttons to manually check for and install updates for your MOTU AVB device. For complete details, see Appendix D, "Updating Firmware" page (99). Updating from a file can be done offline from your computer, using an update you've obtained through MOTU's web site. The Check For Updates button requires that the computer (or device) you are using to view your MOTU AVB interface is connected to the internet through a local network or WiFi.

25. Use these buttons to restart the device or restore its factory presets.

26. In the Optical Setup section, you can choose between 8-channel ADAT or stereo TOSLink formats for bank A input and output, independently. At 88.2 or 96 kHz, the ADAT setting supports 4-channel SMUX format. See "Optical" on page 46.

27. The digital mixer in your MOTU AVB interface supports up to 48 channels. If you don't need that many inputs, you can lower the number here to simplify mixer and routing operation and conserve DSP bandwidth for effects processing.
The Routing Tab lets you route inputs to outputs. Outputs are listed by row on the left; inputs are listed in columns across the top. Simply click in the grid to make a single connection. Click and drag to make multiple connections in one gesture. To route a single input to multiple outputs, make multiple connections vertically in the same column below the input. To mix multiple inputs to the same output, you’ll need to use the mixer (page 21) and the Mix In bank in the routing tab (16).

1. In its collapsed form, (shown here), the sidebar displays icons for each tab.
2. Click this icon to view the Routing tab, shown on this page.
3. Click here to show or hide the sidebar.
4. Create, save, recall and manage routing presets.
5. Outputs are listed in rows on the left.
6. When you make a connection, the source (input) signal is listed by name here in the Source column, just to the right of the output it is being routed to.
7. Inputs are listed in columns across the top of the grid, starting with the physical inputs on the hardware itself. In this example, each 1248 input bank is expanded to reveal individual input channels, except for the 8-channel ADAT A and B banks, which are currently collapsed.
8. The From Computer input bank lets you route audio channels from your host audio software to any output, including AVB network streams or the mixer. In this example, the column is collapsed to save space.
9. AVB streams are 8-channel banks that let you route audio to or from other devices on the AVB network (if any are connected) to local hardware outputs. Use the Device tab (page 19) to configure how many AVB streams you wish to work with. If you aren’t working with network audio, you can set the number of streams to zero.
10. These input streams are busses that originate from the mixer, which supply the main mix bus, monitor mix bus, seven stereo aux busses, three stereo group busses, a reverb return bus and post FX channel sends (for sending preprocessed inputs to the computer or elsewhere). You can route these mixer busses to any outputs you wish (5), including physical outputs, host software on your computer, other devices on the AVB network, or even back in to the mixer (beware of feedback loops!).
11. Use these triangles to expand or collapse groups of outputs. For example, it might be convenient to collapse banks that you are not using at the moment.
12. Click a channel label to rename it.
14. Click the grid to make a connection. Click a connection to remove it. Click and drag to make or break multiple connections in one gesture.
15. In this example, analog inputs 7-8 are being routed directly to analog outputs 5-6. Also, hardware inputs and outputs are being routed to and from the computer channel, which are shown collapsed in this example.
16. The Mix In group lets you route audio to the 48-channel mixer.
17. These AVB output streams let you route any audio to other devices on the AVB network.
18. The To Computer output bank routes any input to host audio software running on your computer. Use the Device tab to choose how many computer channels are available.
19. Use these triangles to expand or collapse groups of inputs. For example, it might be convenient to collapse inputs that you are not using at the moment.
20. These are the physical outputs on the interface itself.
The Mixing tab gives you full access to the 48-channel mixer in your MOTU AVB interface, which provides a main mix bus, monitor bus, three group busses, seven aux busses, and a dedicated reverb bus. Use the Device tab to configure how many inputs you wish to work with (up to 48). Use the Routing tab (page 20) to route channels to the mixer inputs. Channels can come from any source, such as the physical inputs on the interface, channels coming from the computer, or channels coming from the AVB network.

1. Shows and hides the Mixer Setup sidebar (3), which lets you show and hide channels, channel strip settings, effects, and the Legend (6).
2. The Mixing tab selects the mixer.
3. Use the Mixer Setup sidebar to show and hide elements in the mixer.
4. Shows and hides all elements in the section with one click.
5. Create, save, recall and manage mixer presets.

6. This column is the Legend. It provides labels and controls for channel strip sections. The menu at the top lets you create, name, save and manage entire mixer presets.
7. Mixer input channels.
8. This input channel has its Gate and Compressor enabled. Disabled effects are grayed out.
9. This is Group bus 1-2. You can send inputs to this group with their Group send fader (24). Groups are sent to the Main Mix with its Main send fader (24) or aux busses (19).
10. Group buses, the main mix bus, and the reverb return bus are equipped with the Leveler, a vintage compressor modeled after the Intronix LA-2A leveling amplifier.
11. The reverb channel strip provides controls for the reverb processor. Use the reverb send on individual inputs or groups to route them to the reverb bus, which can then be mixed in with the main mix or aux busses. Disable the reverb processor to use it as an extra group.
12. The Monitor Bus can mirror the output of any other bus, or it can act as a separate Solo bus. See page 24.
13. The Main Mix bus is the master fader for the entire mixer. You can add EQ and Leveler compression.
14. You can adjust Aux bus output levels here, or in the Aux Mixing tab shown on page 22.
15. Click a name to change it, except for the Main Mix, Monitor, and Reverb busses, which cannot be changed.
16. Stereo toggle to switch channel pairs between mono or stereo. Use the other menus to manage channel strip settings and to choose audio sources and destinations for mixer inputs and bus outputs.
17. Gate processing for inputs.
18. The Dynamics section provides a conventional compressor for inputs and the Leveler for output busses.
20. Solo and mute. On the Monitor bus, the SC button clears all solos.
22. Choose the source for the Monitor bus from this menu. It can mirror any output bus or the Solo Bus.
23. When Follow Solo is enabled, the Monitor bus temporarily switches to the solo bus when any channel is soloed.
24. Group sends.
25. ‘S’ lets you solo the group. ‘PRE’ toggles the sends between pre- and post-fader routing, i.e. before or after the channel fader.
26. Show and hide output busses here.
27. Show/hide all busses with one click.
28. Same as (25) above.
29. Show and hide inputs here.
30. Show/hide all inputs with one click.
AUX MIXING TAB

The Aux Mixing tab provides quick access to your MOTU AVB interface’s mix busses (aux busses, groups and reverb bus), viewed one at a time. Choose a bus in the Aux Mix Target section and then use the faders to directly mix the send levels from all mixer inputs, groups, and the reverb bus.

1. Shows and hides the Mixer Setup sidebar (3), which lets you show and hide channels.
2. The Aux Mixing tab (shown on this page) gives you access to the Aux busses and groups in the mixer.
3. Use the Aux Mix Target sidebar to control which aux bus or group you are currently viewing. You can also show/hide inputs and group sends.
4. Click the aux bus or group you wish to view in the window. In this example, Aux bus 1-2 is being displayed.
5. These are mixer inputs (aux sends from each mixer channel). To include an input in the aux bus mix, simply bring up its fader.
6. These are group bus faders.
7. This is the mixer’s reverb bus fader.
8. This is the master fader for the current aux bus being viewed (4).
9. Indicates if the input or group is stereo or mono. Each channel’s mono/stereo status cannot be toggled (unlike MIXING page).
10. Solo and mute for the aux bus master fader.
11. When Prefader is enabled, all send levels to the aux bus are independent of the main fader for each channel. In other words, changing an individual channel’s main fader in the Mixing tab won’t affect its send level to the aux bus.
12. Click the View Personal Mix button to open a new web page that displays only that specific Aux Mix or Group.
13. Show and hide mix groups and the reverb bus here.
14. Use the Groups button here to show or hide all groups with one click.
15. Show and hide mixer inputs (channel sends) here.
16. Show and hide all mixer inputs with one click here.
To access a mixer input channel strip, go to the Mixing tab (page 21), reveal the side bar (item #3 on page 21), and then show the input channel you want in the Mixer Inputs section (29).

To show and hide sections of the channel strip, such as EQ or the compressor, use the Controls section of the side bar (item #3 in the Mixing tab on page 21).

1. Click the input channel name to change it. Delete the current name to restore the default name.
2. Provides hardware settings for the input. For example, if the input is a mic input, you’ll see settings for preamp gain, 48V phantom power and so on.
3. Choose the source for the input channel. You can also make this setting directly on the Routing grid (page 20).
4. Create, name, save and recall channel strip presets.
5. Toggles the input between mono and a stereo pair.
7. Each effect in the channel strip (High Pass Filter, Gate, EQ, etc.) has an on/off button (on the left) and a preset menu on the right, for managing presets that apply only to that processing module. For example, you can create your own EQ presets for the EQ modules.
8. The Gate processor provides standard attack, threshold and release controls.
9. The Gate indicator turns red when the gate is engaged.
10. The EQ section provides four bands of parametric EQ, each with standard Gain, Frequency, and Bandwidth settings.
11. The High and Low EQ bands provide a Shelf filter button for standard high and low shelf filtering.
12. The Compressor provides standard controls for Threshold, Ratio, Attack, Release and Gain. Normally, the compressor operates in Peak mode, where signal peaks determine the input level. Engage the RMS button to use RMS values (a computational method for determining overall loudness) to measure the input level.
13. Input level and gain reduction meters for the compressor.
15. Solo/Mute. Mute affects all sends as well as the main channel. Pre-fader sends are not affected by Mute.
16. Move the fader to adjust level. Double-click to return to zero (unity gain) or $-\infty$.
17. Click the dB scale numbers to make the fader jump exactly to that level. Click and drag horizontally to jump consecutive faders to the same level.
18. Click to type in an exact dB level.
19. Channel pan. For mono inputs, double-click to center.
20. Main Mix Slider is used to feed signal to the Main Mix. Slider is set to 0 dB by default, so all channel strips are pre-routed to the Main Mix bus. If a channel is being sent to a Group (which will eventually be fed to the Main Mix), drag the slider to $-\infty$ so it is not sent to Main Mix directly.
22. ‘S’ lets you solo the group. ‘PRE’ toggles the sends between pre- and post-fader routing, i.e. before or after the channel fader.
23. Clears all solos.
24. ‘S’ lets you solo the Aux bus. ‘PRE’ toggles the sends between pre- and post-fader routing, i.e. before or after the channel fader.
25. This side bar, with the section labels in it, can be shown or hidden using the Legend switch in the Controls section of the side bar (item #3 in the Mixing tab on page 21).
26. Shows how much DSP power is being used by the mixer hardware. To free up DSP bandwidth, try reducing the number of mixer ins, disabling channel effects, reverb, etc. See “DSP Usage” on page 78 for more info.
To access the Main Mix and Monitor channel strips, go to the Mixing tab (page 21) and scroll the display to the right, beyond the inputs and groups.

To show and hide sections of the channel strip, such as EQ or the Leveler, use the Controls section of the side bar (item #3 in the Mixing tab on page 21).

1. By default, the Monitor bus serves as a solo bus. However, it can be set to mirror the main mix bus, or any other aux bus, group, or the reverb bus, in addition to monitoring solo. Make this choice in the source menu (12). Use the Routing grid (page 20) to specify the output for the Monitor bus.

2. The Main Mix bus is the primary stereo mix.

3. Provides hardware settings for any assigned outputs that have them. For example, if the Main Out bus is assigned to the Phones and Main Outs (physical outputs on the interface), you’ll see trim settings for both pairs. Grayed out if there are no settings for output.

4. Use this output assignment widget to choose the destination — or multiple destinations — for the bus. You can also make this setting directly on the Routing grid (page 20).

5. Use the preset menus to create save, recall, and otherwise manage channel strip presets for the Monitor bus and Main Mix bus.

6. Indicates that the bus is stereo.

7. The four-band parametric EQ for the Main Mix bus operates the same as described for input channels (items 10 and 11 on page 23), including High and Low Shelf filter options.

8. The Leveler provides specialized gain reduction modeled after the legendary Teletronix LA-2A Leveling Amplifier. For complete details, see “Leveler” on page 76.

9. Mutes for the Main Mix bus and Monitor bus.

10. Master faders for the Main Mix bus and Monitor bus. Use the same techniques described for input channel faders (items 16, 17 and 18 on page 23).

11. When Follow Solo is enabled, the Monitor bus switches to the solo bus when any channel is soloed. NOTE: if an aux bus is soloed, then the Monitor bus carries only the soloed aux bus (any current channel solos are excluded).

12. Choose the source for the Monitor bus from this menu. It can mirror the main mix, any aux bus, group, the reverb bus, or it can serve only as a Solo bus.

13. The SC button clears all solos.

14. This mid-band EQ is currently disabled (and therefore grayed out).
Aux buses can be used to create sub-mixes. An aux bus can be assigned to any output in the Routing grid (page 20).

To access an Aux bus channel strip, go to the Mixing tab (page 21), reveal the side bar (item #3 on page 21), and then show the aux buses you want in the Mixer Outputs section (26).

To show and hide the four-band EQ section of the channel strip, use the Controls section of the side bar (item #3 in the Mixing tab on page 21).

1. A stereo aux bus.
2. A mono aux bus.
3. Click this dot to toggle an aux bus between mono and stereo.
4. The four-band parametric EQ module for Aux buses operates the same as described for input channels (items 10 and 11 on page 23), including High and Low Shelf filter options.
5. Aux bus solo and mute.
6. Aux bus master fader.
7. Click to type specific value manually.
8. Click the dB scale numbers to make the fader jump exactly to that level. Click and drag horizontally to jump consecutive faders to the same level.
10. Use these menus (hardware settings, output assignment, and presets) in a similar fashion as described for the Main Out bus (items 3-5 on page 24).
Group and Reverb Channel Strips

1. A Group bus channel strip. Click the name to rename it. Delete the current name to return to its default.

2. The Reverb bus. If you disable the Reverb processor, it can be used as a fourth Group bus. The Reverb channel strip is twice as wide as other mixer channel strips to accommodate the Reverb processor controls.

3. Group busses and the Reverb bus are always stereo.

4. The four-band parametric EQ module for Group busses and the Reverb bus operates the same as described for input channels (items 10 and 11 on page 23), including High and Low Shelf filter options.

5. The Reverb processor. For complete information, see “Reverb” on page 77.

6. Main Mix sends.

7. Master faders for the Group and Reverb busses.

8. Mute and Solo.

9. Use these menus (hardware settings, output assignment, and presets) in a similar fashion as described for the Main Out bus (items 3-5 on page 24).
CHAPTER 1 About Your MOTU AVB Audio Interface

The 1248, 8M, and 16A are hybrid Thunderbolt™/USB2 audio interfaces with 48-channel digital mixers and AVB Ethernet networking capability. They can operate as audio interfaces for a computer, as stand-alone digital mixers, as gateways to an expanded studio system, as components of an extended AVB audio network, or as capable hybrid devices performing all of these roles simultaneously.

Together, they are designed to be a central component of a modern, high performance recording studio or live mixing platform. The following sections provide a brief overview of their main features and characteristics.

State-of-the-art A/D and D/A conversion
The analog section of each interface employs state-of-the-art 24-bit DACs and ADCs, which deliver analog recording and playback with remarkably high dynamic range at sample rates from 44.1 to 192 kHz.

Complementary I/O configurations
Each interface delivers an exceptional array of analog and digital audio. In addition, the interfaces are designed to complement one another in terms of delivering a wide range of I/O options; you can mix and match several interfaces and operate them as a unified I/O and mixing system. The following sections provide a bird’s-eye glance of the I/O configurations offered by each interface in the MOTU AVB family.

Each interface provides a variety of analog and digital interconnects, all active simultaneously, designed to provide everything you need for a well-equipped recording studio.

1248
66 simultaneous audio channels

<table>
<thead>
<tr>
<th>Connection</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter-inch analog on bal/unbal TRS</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Mic inputs with individual preamps on XLR</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Hi-Z guitar inputs</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Headphone output</td>
<td>-</td>
<td>2 x stereo</td>
</tr>
<tr>
<td>ADAT optical digital (at 44.1 or 48 kHz)</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>RCA S/PDIF digital up to 96 kHz with SRC</td>
<td>stereo</td>
<td>stereo</td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
<td>34</td>
</tr>
</tbody>
</table>

8M
50 simultaneous audio channels

<table>
<thead>
<tr>
<th>Connection</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter-inch analog on bal/unbal TRS</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Mic/guitar inputs on combo XLR/TRS</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Headphone output</td>
<td>-</td>
<td>stereo</td>
</tr>
<tr>
<td>ADAT optical digital (at 44.1 or 48 kHz)</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>26</td>
</tr>
</tbody>
</table>

16A
64 simultaneous audio channels

<table>
<thead>
<tr>
<th>Connection</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter-inch analog on bal/unbal TRS</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>ADAT optical digital (at 44.1 or 48 kHz)</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

Network I/O
Each interface is also capable of handling 128 channels of network audio input and output for an additional 256 simultaneous audio channels.
Other MOTU AVB interfaces

The 1248, 8M and 16A are part of a larger family of audio interfaces, summarized below, with complementary I/O configurations.

24Ai

72 simultaneous audio channels

<table>
<thead>
<tr>
<th>Connection</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balanced analog on 3x D-sub or 6x Phoenix</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>ADAT optical digital (at 44.1 or 48 kHz)</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
<td>24</td>
</tr>
</tbody>
</table>

24Ao

72 simultaneous audio channels;

<table>
<thead>
<tr>
<th>Connection</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balanced analog on 3x D-sub or 6x Phoenix</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>ADAT optical digital (at 44.1 or 48 kHz)</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>48</td>
</tr>
</tbody>
</table>

Monitor 8

40 simultaneous audio channels (54 connections)

<table>
<thead>
<tr>
<th>Connection</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter-inch analog on bal/unbal TRS</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>XLR main out</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Summed mono quarter-inch out</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Headphone outs</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>ADAT optical digital (at 44.1 or 48 kHz)</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>Total I/O connections</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>Total I/O channels (discrete channels)</td>
<td>24</td>
<td>16</td>
</tr>
</tbody>
</table>

112D

224 simultaneous audio channels

<table>
<thead>
<tr>
<th>Connection</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAT optical digital (up to 96 kHz)</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>AES/EBU on 8-ch DB25 D-sub</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>MADI on coaxial BNC</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Total I/O connections</td>
<td>112</td>
<td>112</td>
</tr>
</tbody>
</table>

Universal connectivity

The 1248, 16A, and 8M can connect to a computer with Thunderbolt or high-speed USB 2.0 (which is compatible with USB 3.0). They are USB audio class-compliant, which means that they are iPad compatible (with a camera connection kit) and do not require driver installation for USB connection to a computer. Industry standard audio drivers for both Thunderbolt and USB operation provide universal compatibility with any audio software.

Alternately, the 1248, 16A, and 8M can be connected to the Ethernet port on a recent-generation Mac (any Mac with Thunderbolt on it) running Mac OS X Yosemite (10.10) or later for audio interface operation through AVB Ethernet.

On-board DSP with mixing and effects

Each interface is equipped with a powerful DSP engine that drives both an extensive routing matrix and a 48-input digital mixer with 12 stereo busses and effects. The mixer offers familiar operation modeled after large format mixing consoles.

32-bit floating point processing

All of the mixing and effects processing in the DSP engine is handled with 32-bit floating point calculations, to maintain and deliver virtually unlimited headroom and the utmost in sound quality.

Modeled vintage effects processing

Effects include “classic” reverb, compression modeled after the legendary Teletronix LA-2A compressor, and 4-band EQ modeled after British analog console EQs.

AVB system expansion and audio networking

AVB stands for the IEEE 802.1 Audio Video Bridging Ethernet standard for high-bandwidth, low-latency audio streaming over Ethernet. The AVB Ethernet network port on each MOTU interface lets you add a second AVB-equipped MOTU interface using any standard CAT-5e
Ethernet cable. You can network up to five MOTU interfaces together using a MOTU AVB Switch™ (sold separately), and then run them as a standalone network or as an extended bank of I/Os for your computer-based production system (or both). You can even connect multiple computers, each with full access to all devices on the network (including the other computers).

With additional standard AVB switches (from MOTU or other brands) and standard Ethernet cabling, you can build an extensive AVB audio network. The entire network operates with near-zero network latency, even over very long cable runs. MOTU’s AVB implementation allows you to stream hundreds of audio channels among devices and computers on the network with guaranteed Quality of Service (QoS), prioritizing audio streams over less important traffic.

Web app control
You can control on-board DSP, mixing, device settings, clock/sync settings, and network audio routing from the MOTU AVB Control web app software running in your favorite browser on a laptop, tablet or smart phone connected to your MOTU interface directly, or through your local WiFi network. Multiple devices can be used simultaneously to access any audio interface settings on the network.

Stand-alone mixing with wireless control
If you connect your MOTU interface to an Apple Airport or other WiFi router with a standard Ethernet cable, you can control its powerful mixing and DSP effects from your smart phone or tablet, without a computer — great for live sound mixing from your iPad, tablet, or other wireless device.

ADAT digital I/O
The 1248, 8M, and 16A interfaces each provide two 8-channel banks of optical digital I/O. Connect outboard digital processors, digital mixers or other gear: 16 channels at 44.1/48 kHz or 8 channels at 88.2/96 kHz.

S/PDIF digital I/O with SRC
The 1248 provides S/PDIF digital input and output on standard RCA “coax” connectors. The input is equipped with Sample Rate Conversion (SRC), allowing you to input a digital signal running at a different sample rate than the 1248. See “S/PDIF with sample rate conversion” on page 46.

Word clock
Each MOTU interface supports standard word clock synchronization at any supported sample rate. When the interface is operating at 96 kHz, it can generate word clock output at either 96 or 48 kHz; the 1x equivalence is available as an option for word clock output when running at high sample rates (from 88.2 to 192 kHz). The word clock OUT port can alternately be used as a THRU.
port for word clock daisy-chaining. To configure, use the LCD menu to navigate to Settings -> Word Clock Thru Mode.

Comprehensive metering
The large backlit LCD displays all signal activity at a glance with detailed metering for all analog and digital I/O. You can access many hardware settings directly from the front panel.

Headphone outputs
The 1248 front panel provides two independent headphone jacks with separate volume controls. You can program the outputs to mirror another set of 1248 outputs or act as their own independent outputs. The 8M also offers a single headphone output.

Precision Digital Trim™
On each interface, all of the analog inputs are equipped with digitally controlled analog trims, adjustable in 1 dB increments. The input trims for mic inputs and guitar inputs can be adjusted from the knobs on the front panel. You can save your trim configurations as a preset for instant recall.

Rack mount or desktop operation
Each interface is housed in a sturdy, metal-alloy, 19-inch, rack-mountable unit. The rack mounting brackets can be removed using a 7/64” hex wrench for desktop operation.

AudioDesk
AudioDesk is a full-featured audio workstation software package for Mac and Windows that is available as a free download for you as a 1248, 8M or 16A owner. Visit motu.com/avb to obtain your copy. AudioDesk provides multi-channel waveform editing, automated virtual mixing, graphic editing of ramp automation, real-time effects plug-ins with crossfades, support for many third-party audio plug-ins, sample-accurate editing and placement of audio, and more.
CHAPTER 2 Packing List and System Requirements

PACKING LIST
Your MOTU interface ships with the items listed below. If any of these items are not present in the box when you first open it, please immediately contact your dealer or MOTU.

- One audio interface
- One USB cable
- One power cord
- One manual
- Product registration card

SYSTEM REQUIREMENTS
- A 1 GHz Intel-based Mac or Pentium-based PC (or compatible). Faster CPUs are recommended for best performance.
- 2 GB RAM; 4 GB or more recommended.
- OS X 10.8 or later; Windows 7 or later; for operation as an AVB Ethernet audio interface, Mac OS X 10.10 or later is required, running on a recent-generation Mac (any Mac with a Thunderbolt port on it).
- Available Thunderbolt or high-speed USB 2.0 (or 3.0) port
- A large hard drive (preferably at least 500 GB)

PLEASE REGISTER TODAY!
Please register your MOTU interface today. There are two ways to register.

- Visit www.motu.com/register

OR

- Fill out and mail the included product registration card

As a registered user, you will be eligible to receive technical support and announcements about product enhancements as soon as they become available. Only registered users receive these special update notices, so please register today.

Thank you for taking the time to register your new MOTU products!
OVERVIEW

USB 2.0 class-compliant operation 33
Operation as an AVB Ethernet audio interface ... 33
Software installation 33
Audio drivers .. 34
MOTU AVB Discovery app for Mac 34
MOTU AVB WebUI Setup for Windows 34
MOTU AVB USB Control Panel 34
AudioDesk workstation software 35
Working with host audio software 35

USB 2.0 CLASS-COMPLIANT OPERATION

Your MOTU interface is a USB 2.0 audio class-compliant device. This means that you can connect it to your Mac with a USB cable and use it without installing any software drivers. The Mac recognizes your MOTU interface as a USB audio device and makes its inputs and outputs available to your host audio software. Basic settings, such as the hardware’s sample rate, are made in either your host software (Mac) or your system settings (Windows).

In this scenario, your MOTU interface provides basic audio input and output, and no software driver installation is necessary.

As explained earlier in this guide, the MOTU AVB Control web app provides full access to all settings in the device, including the extensive on-board routing, mixing, and effects processing features. Since the web app is served from the audio interface hardware itself, it does not require any software installation on your computer; all it requires is a network connection between your computer and your MOTU interface with a standard Ethernet cable, Ethernet hub, or shared Wi-Fi network. For details about accessing the web app through the network port, see “MOTU AVB Control Web App” on page 17.

OPERATION AS AN AVB ETHERNET AUDIO INTERFACE

To use your MOTU interface as an audio interface over AVB Ethernet, all you need is a recent Mac (any Mac that has a Thunderbolt port on it) with Mac OS X Yosemite (10.10) or later installed. Connect the network port on your MOTU interface to the Ethernet port on the Mac using a standard, high-grade (CAT-5e or CAT-6) network cable up to 100 meters in length. You can then use your MOTU interface as a standard, low-latency multi-channel audio interface with any Core Audio compatible host software running on the Mac.

In this scenario, your MOTU interface provides basic audio input and output, and no software driver installation is necessary.

For details about accessing device settings in the web app through a network port connection, see “MOTU AVB Control Web App” on page 17.

SOFTWARE INSTALLATION

Software installation is required for any of the following scenarios:

- You are using a PC running Windows 7 or later.
- You will use your MOTU interface as a Thunderbolt audio interface with your laptop or desktop computer.
- You will use your MOTU interface as a USB audio interface, and you want to access the web app without using the network port.
- You will be using multiple MOTU interfaces.
If none of the above scenarios apply to you, then you can skip software installation if you wish, and proceed to details about accessing the web app through the network port, see “MOTU AVB Control Web App” on page 17.

Download and run the MOTU AVB Audio Installer

To download the latest MOTU AVB audio installer for Mac or Windows, visit www.motu.com/avb. Follow the directions that the installer gives you.

We recommend that you run the software installer before you connect your MOTU interface to your computer and power it on. This ensures that all driver components are properly installed in your system.

AUDIO DRIVERS

On the Mac, the installer provides a Core Audio driver for Thunderbolt operation. (USB audio operation is handled by Mac OS X.) On Windows, the installer provides USB ASIO and Wave drivers.

MOTU AVB USB ASIO Driver

On Windows, to enable your MOTU interface in your ASIO host software, choose the MOTU AVB USB ASIO driver.

MOTU AVB DISCOVERY APP FOR MAC

On the Mac, the MOTU AVB Discovery app is installed in your Mac’s applications folder; a shortcut is installed for it, too (as shown on page 7). It locates all MOTU AVB interfaces connected to the Mac, either directly through USB or on your network, and displays them in a list. Choose an interface to access its settings through the web app (“MOTU AVB Control Web App” on page 17).

MOTU AVB WEBUI SETUP FOR WINDOWS

On Windows, the installer provides a MOTU AVB WebUI Setup shortcut found on the Windows desktop or in Start menu> All Programs> MOTU. Use this shortcut to access the MOTU AVB Control web app directly in your favorite web browser.

MOTU AVB USB CONTROL PANEL

On Windows, the MOTU AVB USB Control Panel (Start menu> All Programs> MOTU) provides three tabs: Status, Buffer Settings and Info. The Buffer Settings tab provides several basic settings for the AVB USB driver.

USB Streaming Mode

USB Streaming Mode (Figure 3-2) determines how frequently the USB driver transfers audio. Smaller settings reduce latency. This setting determines the latency for standard Windows audio applications (such as Media Player). For further information about Latency, refer to “Reducing monitoring latency” on page 69.

ASIO Buffer Size

ASIO Buffer Size (Figure 3-2) determine how much delay you hear when monitoring live inputs through your audio software: larger buffers
produce more delay; smaller buffers produce less. For complete information about this setting, see “Working with Host Audio Software” on page 65.

AUDIODESK WORKSTATION SOFTWARE
AudioDesk is an advanced workstation software package for Mac and Windows that lets you record, edit, mix, process, bounce and master multi-track digital audio recording projects. Advanced features include real-time effects processing, recording, and much more.

See the AudioDesk User Guide, available on your computer hard drive as a PDF document.

Figure 3-3: AudioDesk.

WORKING WITH HOST AUDIO SOFTWARE
For further information about using your MOTU interface with host audio software, see “Working with Host Audio Software” on page 65.
CHAPTER 4 Hardware Installation

OVERVIEW
Rack installation and heat 37
Thunderbolt audio interface setup 37
USB audio interface setup 38
AVB Ethernet audio interface setup 38
Setup for two interfaces 39
Setup for three to five interfaces 40
Setup for a multi-switch network 41
Setup for multiple Thunderbolt and USB interfaces . 42
Setup for web app control 43
Audio connections 45
A typical 1248 setup 48
A typical 8M setup 49
A typical 16A setup 50
Synchronization 51
Synching S/PDIF devices 52
Synching word clock devices 52
Synching an AVB network 53
Synching multiple AVB audio interfaces connected to a Mac 54

RACK INSTALLATION AND HEAT
When installing your MOTU audio interface in a 19-inch rack, leave extra space above, below, behind and on either side of the unit to provide adequate ventilation and heat dispersion. Do not install it near other gear that generates excessive heat.

THUNDERBOLT AUDIO INTERFACE SETUP
Use this setup if you want to use your MOTU device as an audio interface, and your computer has Thunderbolt™.

■ Use a standard Thunderbolt cable.
■ Place it at the end of the Thunderbolt chain (up to six devices in the chain, not including the computer).
■ See “Software installation” on page 33.
USB AUDIO INTERFACE SETUP

Use this setup if you want to use your MOTU device as an audio interface, and your computer doesn't have Thunderbolt.

- Use a standard USB cable.
- Connect to any USB port (USB2.0 or 3.0).
- See “USB2.0 class-compliant operation” on page 33.
- No driver installation is necessary, (unless you want to use the web app).

AVB ETHERNET AUDIO INTERFACE SETUP

As an alternative to Thunderbolt or USB, use this setup if you want to use the your MOTU interface as an AVB Ethernet audio interface for a recent-generation Mac (i.e. any Mac with a Thunderbolt port on it). Mac OS X Yosemite (10.10) or later is also required for AVB audio I/O.

- Use a standard CAT-5e or CAT-6 cable.
- Connect to the computer's Ethernet port.
- See “Operation as an AVB Ethernet audio interface” on page 33.
- No driver installation is necessary.
- Enable at least one AVB stream (item #20 on page 19).
- Launch the Mac's Audio MIDI Setup utility to enable your MOTU AVB interface and set the clock source and sample rate.
- The number of AVB audio channels that OS X can handle depends on the speed of your Mac.
- If applicable, see “Syncing multiple AVB audio interfaces connected to a Mac” on page 54.
SETUP FOR TWO INTERFACES

Use this setup if you want to connect two MOTU interfaces to your computer.

■ The connection to the computer should be Thunderbolt, if possible, to support all the I/O for the networked interfaces.

■ Use a standard Thunderbolt cable. Place it at the end of the Thunderbolt chain.

■ Use any standard CAT-5e Ethernet network cable to connect the two interfaces together using their NETWORK ports.

■ As an alternative, see “Setup for multiple Thunderbolt and USB interfaces” on page 42.

About CAT-5e cables

Use shielded CAT-5e or CAT-6 cables, which are a higher grade version of a standard Ethernet patch cable. They are available wherever network cables are sold.
SETUP FOR THREE TO FIVE INTERFACES
Use this setup if you want to connect three to five MOTU interfaces to your computer using a MOTU AVB Switch™ (sold separately).

- The connection to the computer should be Thunderbolt, to support a large number of audio streams to and from the networked interfaces. A single Thunderbolt connection supports 128 channels in and out, simultaneously. If you need more channels, and your computer has a second available Thunderbolt port, you can make a second connection to another interface on the network, with full access to the network from both ports (128 I/O channels each).
- Use a standard Thunderbolt cable. Place it at the end of the Thunderbolt chain.
- Use standard CAT-5e Ethernet network cables to connect the interfaces to the MOTU AVB Switch using their NETWORK ports.
- Use the five AVB NETWORK ports on the switch (not the Ethernet port).
- Network cable lengths can be long: 100 meters with standard copper wire cables; much longer with fiber-optic network cables.
- See “About CAT-5e cables” on page 39.
- As an alternative, see “Setup for multiple Thunderbolt and USB interfaces” on page 42.
- To add more computers to the network, connect them to any interface, as shown. All computers and interfaces have full access to each other.
- See chapter 9, “Networking” (page 79).
SETUP FOR A MULTI-SWITCH NETWORK
Use this setup if you want to connect more than five MOTU interfaces to an extended network that employs multiple AVB switches. AVB Ethernet is an industry standard, so you can use MOTU AVB Switches or 3rd-party AVB switches.

- You can daisy-chain switches in serial fashion, but don’t create loops. For example, switches A, B, and C below are chained properly, but don’t connect C back to A. Alternately, you could connect both Switches B and C to Switch A.
- For further information, see chapter 9, “Networking” (page 79).
SETUP FOR MULTIPLE THUNDERBOLT AND USB INTERFACES
It is possible to connect multiple MOTU interfaces directly to your host computer through multiple Thunderbolt and USB ports. Alternately, you can connect multiple interfaces, operating as AVB Ethernet audio interfaces, using an AVB switch connected directly to the Mac. However, there are several disadvantages to using any of these direct connection schemes:

- The audio interfaces will not be clocked to one another and may be susceptible to drift, unless you use external word clock connections (if available). You are better off using the AVB network connections shown on pages 39-41. In this setup, the interfaces are very tightly synchronized with each other (measured in pico seconds) through their network connections.
- You will not be able to route audio directly from one audio interface to another. You are better off using the AVB network connections shown on pages 39-41, which allows you to route audio streams (hundreds at a time) directly among interfaces with near-zero latency.

Connecting multiple interfaces using Thunderbolt
If you have multiple MOTU AVB interfaces with Thunderbolt connectivity (1248, 8M, 16A or 112D) and your host computer has two or more Thunderbolt ports, you can connect one interface to each port, either directly or at the end of a Thunderbolt daisy chain (on either port or both ports).

Connecting multiple interfaces using Thunderbolt and USB
Another way to operate multiple interfaces on the same host computer is to connect the first interface to a Thunderbolt port and the second to a USB 2.0 (or 3.0) port.

Multiple interfaces and USB
When connected through USB, your MOTU interface operates as a USB 2.0 device, even when connected to a USB 3.0 port. USB 2.0 provides enough bus speed for several USB 2.0 devices, but due to your MOTU interface’s high-performance requirements for real-time operation and low latency timing, we recommend the following:

- Do not connect more than two units to your computer’s USB 2.0 or 3.0 port(s).
- When two units are connected with USB 2.0, don’t connect other USB 2.0 or 3.0 devices, such as external hard drives.
- For best results, establish clock synchronization with other interfaces connected to the same computer. You can use word clock, S/PDIF, optical, or AVB to achieve clock synchronization.

Multiple AVB Ethernet audio interfaces
When operating as an AVB Ethernet audio interface (“AVB Ethernet audio interface setup” on page 38), multiple AVB audio interfaces can be connected using a MOTU AVB Switch (or any 3rd-party AVB switch), and the Mac can see all of them through their AVB connection. For example, you could connect an Avid S3 console to the Mac, and then connect a MOTU interface to the S3’s extra network port (which is a built-in switch). The Mac can see both for audio I/O. However, OS X takes over each device for exclusive use, so they can only stream audio to and from the Mac, not each other. The same is true for all AVB devices connected to the Mac. See “Syncing multiple AVB audio interfaces connected to a Mac” on page 54.

Mixing and matching audio interfaces
In the scenarios just discussed for connecting multiple interfaces, you can mix and match the interface with other MOTU audio interface models. For example, you could connect a 1248 through Thunderbolt and another MOTU audio interface, such as a 24Ao, through USB 2.0.
The MOTU AVB Control web app gives you access to all settings, routing, mixing, and effects processing in your audio interface, and each interface on the AVB network, if applicable. For more info, see “MOTU AVB Control Web App” on page 17.

The web app is a web application served by the hardware. All you need to run it is a web browser running on a device that has a connection to your audio interface through Thunderbolt, USB or a shared network.

Web app control can be set up independently of audio connections
The connections in this section, especially the network scenarios, can be set up independently of USB, Thunderbolt, or AVB networking connections you make for audio routing (as shown in the setup diagrams earlier in this chapter). In addition, connections for web app control can be made over standard Ethernet and do not require AVB Ethernet connections. Think of web app control as being separate from audio. Doing so opens up a lot of possibilities for control of your MOTU interface, independent of the connections you make for audio.

Mixing and matching web app control scenarios
The web app connection scenarios shown in the following sections are not exclusive from one another. You can set up as many web app connections as you wish and control your MOTU device from many web app hosts simultaneously.

Launching the web app
Once you’ve made any of the connections shown in the following sections, launch the web app as explained in “Make hardware and network connections” on page 17.

Web app control over USB or Thunderbolt
If your audio interface is connected a computer with internet access through Thunderbolt or USB (as shown on page 37 and 38), you can access the web app from the computer, or any other device on the network. In this case, make sure you’ve run the software installer (page 33), which installs drivers that allow your computer to properly communicate with the device.

Web app control through standard Ethernet
Your MOTU interface can also be controlled by the web app running on any device that has a standard Ethernet connection to the interface, either directly with a network cable, through an Ethernet hub, or through WiFi on your local network. The sections on the opposite page show you how to set up each of these connection scenarios.
Ethernet cable
A simple Ethernet cable connection can be used for web app control, even without a USB or Thunderbolt connection to your computer. For example, if you are using your MOTU device as a mixer or audio router, you could control the on-board routing, mixing and effects from the web app through a standard Ethernet connection.

WiFi
When using standard WiFi as shown, you can control your MOTU interface from multiple WiFi devices simultaneously.

Ethernet hub or network (LAN)
In this scenario, both your laptop and your MOTU device are connected to a standard Ethernet hub or home/office network (LAN). You can run the web app on multiple computers simultaneously.

Ethernet network + WiFi
You can, of course, combine the setups shown in Figure 4-3 and Figure 4-4, with WiFi connected to the Ethernet hub or network.

MOTU AVB Switch
The MOTU AVB Switch provides five AVB Ethernet ports, plus one standard Ethernet port. Use the AVB ports for MOTU audio interfaces, and use the Ethernet port for WiFi, Ethernet, etc.
AUDI0 CONNECTIONS
Here are a few things to keep in mind as you are making audio connections to your MOTU interface.

Mic inputs with preamps
Connect a microphone using a standard mic cable.

☛ Do not connect a +4 dBu (line level) signal to the mic inputs without using the -20dB Pad. It is recommended you connect line level signals to the quarter-inch inputs instead.

Phantom power
If you are connecting a condenser microphone or another device that requires phantom power, engage the mic input’s corresponding front-panel phantom power button.

Preamp gain
The 1248's preamp provides 63 dB of gain. Use the front panel detented trim knobs to adjust gain as needed for each input. The LCD provides visual feedback as you turn the trim knob. Preamp gain is digitally controlled, so you can make fine-tuned adjustments in 1dB increments. You can also adjust preamp gain in the web app. See “Device tab” on page 18.

-20 dB pad
Each mic input (XLR jack) is equipped with a -20 dB pad switch, to accommodate input signals that could overdrive the input.

Guitar inputs
The 1248 provides two dedicated guitar inputs on its front panel. These inputs are specially designed for guitar or bass instruments, with a high-impedance load of 1 megaohm. Use the knob to adjust input trim.

Mic/line/instrument combo inputs
The 8M provides XLR/TRS combo jacks that accept an XLR mic plug or a quarter-inch plug from a line level source or guitar. Each input provides individual preamp gain, pad and 48V phantom power. (Phantom power is supplied to the XLR connector only.) Use these general guidelines for the 48V phantom power, pad and gain settings on these combo input jacks:

<table>
<thead>
<tr>
<th>Input</th>
<th>48V</th>
<th>Pad</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condenser mic</td>
<td>On</td>
<td>As needed</td>
<td>As needed</td>
</tr>
<tr>
<td>Dynamic mic</td>
<td>Off</td>
<td>As needed</td>
<td>As needed</td>
</tr>
<tr>
<td>Guitar</td>
<td>n/a</td>
<td>n/a</td>
<td>As needed</td>
</tr>
<tr>
<td>-10 dBV Line level via TRS</td>
<td>n/a</td>
<td>n/a</td>
<td>As needed</td>
</tr>
<tr>
<td>-10 dBV Line level via XLR</td>
<td>Off</td>
<td>-20 dB</td>
<td>+12dB</td>
</tr>
<tr>
<td>+4 dBu Line level (XLR only)</td>
<td>Off</td>
<td>-20 dB</td>
<td>Zero</td>
</tr>
</tbody>
</table>

V-Limit™
Each 8M mic input is individually equipped with V-Limit (page 18), which help prevent digital clipping from overloaded input signals. For details, see “8M mic/guitar input meters with V-Limit™ compressor” on page 61.

Soft Clip™
Additional or alternative protection can be applied individually to 8M mic/guitar inputs by enabling Soft Clip (page 18). When enabled, Soft Clip engages just before clipping occurs and helps further reduce perceptible distortion.

TRS quarter-inch analog inputs and outputs
Quarter-inch analog inputs and outputs are balanced (TRS) connectors that can also accept an unbalanced plug.

☛ Quarter-inch analog outputs are not cross-coupled. Therefore, use a TRS plug with the ring disconnected. Not floating the negative terminal will short it to the sleeve ground and cause distortion.
TRS quarter-inch analog trims
All quarter-inch analog inputs and outputs can be trimmed. This allows them to support a variety of standards, including EBU-R68, SMPTE RP-155, +4dBu, -10dBV, 2vRMS, 1vRMS.

Quarter-inch analog inputs are equipped with high-quality, digitally controlled analog trim that provides a 22dB range (+2dBu to +24dBu) in 1dB steps.

Outputs can be trimmed at the digital stage, before the DAC. Range is 16 dB.

Trim controls are most easily accessed in the web app. See “Device tab” on page 18. Trim settings can also be accessed in the LCD menu.

Optical
Your MOTU audio interface provides two banks of ADAT optical ("lightpipe") connectors. Each bank provides an input and output connector. Together, they provide 16 channels of ADAT optical digital I/O at 44.1 or 48 kHz, or 8 channels at 88.2 or 96 kHz. The optical ports are disabled when the interface is operating at a 176.4 or 192 kHz. At the high sample rates (88.2 or 96 kHz), 4-channel SMUX operation supports two modes (item #26 on page 19):

- **Standard** — for 2x optical connection to 3rd-party SMUX-compatible hardware products.
- **Type II (Legacy)** — for 2x optical connection to legacy MOTU products that are equipped with optical ports and support 2x operation.

The optical ports are disabled when the interface is operating at a 176.4 or 192 kHz.

TOSLink (optical S/PDIF)
Alternately, the optical ports can be configured for stereo TOSLink (optical S/PDIF) in the web app (item #26 on page 19). The optical IN and OUT banks can be configured independently.

Choosing a clock source for optical connections
When connecting an optical device, make sure that its digital audio clock is phase-locked (in sync with) your MOTU interface, as explained in “Synchronization” on page 51. There are two ways to do this:

A. Resolve the optical device to your MOTU interface

B. Resolve your MOTU interface to the optical device

For A, choose Internal (or anything other than ADAT A or B) as the clock source in the Device tab (page 18).

For B, choose either ADAT A or ADAT B as the clock source (page 18). Be sure to choose the optical port that the device is connected to.

Using word clock to resolve optical devices
If the optical device has word clock connectors on it, you can use them to synchronize the device with your MOTU interface. See “Syncing word clock devices” on page 52.

S/PDIF with sample rate conversion
The 1248 provides S/PDIF digital audio input and output. Be sure to review the digital audio clocking issues, as explained in “Syncing S/PDIF devices” on page 52. The S/PDIF input is also equipped with sample rate conversion, which allows you to capture digital input without digital audio sync. You can even record S/PDIF input that is running at a completely different sample rate than the 1248's current sample rate.

When the 1248 clock mode (item #13 on page 18) is set to S/PDIF, the 1248 resolves to the incoming S/PDIF signal and no sample rate conversion occurs. In this scenario, an exact bit-for-bit digital audio transfer is accomplished.
When the 1248 clock mode is set to any other source besides S/PDIF, then sample rate conversion is automatically enabled for the input, which can record any S/PDIF signal up to 96 kHz. This is not an exact bit-for-bit digital transfer, but sophisticated filtering is applied to ensure the highest possible audio quality.

The S/PDIF output is not equipped with sample rate conversion, so it always outputs at the 1248’s current operational sample rate (item #13 on page 18).
A TYPICAL 1248 SETUP
Here is a typical 1248 studio setup. This rig can be operated without an external mixer. All mixing and effects processing can be done in the 1248 itself, on the computer with audio software, or both. During recording, you can use the 1248’s on-board mixing to listen to what you are recording via the main outs, headphone outs, or any other output pair. You can control all mixing and effects processing from your laptop, tablet, or smart phone.

![A 1248 studio diagram](image-url)

Figure 4-6: A typical 1248 studio setup.
A TYPICAL 8M SETUP
Here is a typical 8M studio setup. Like the 1248, this rig can be operated without an external mixer. All mixing and effects processing can be done in the 8M itself, on the computer with audio software, or both. During recording, you can use the 8M’s on-board mixer to listen to what you are recording via the headphone out or any output pair. You can control all mixing and effects processing from your laptop, tablet or smart phone.

Figure 4-7: A typical 8M studio setup.
A TYPICAL 16A SETUP
Here is a typical 16A studio setup, although the 16A is certainly flexible and supports many operational configurations not shown here. This diagram is meant to give you just a few ideas of what is possible. The 16A can be used as an audio interface, mixer, effects processor, or even as a patch bay. You can control all mixing, effects processing, and routing from your laptop, tablet or smart phone.

Figure 4-8: A typical 16A studio setup.
SYNCHRONIZATION
If you connect devices digitally to your MOTU device, or if you need to synchronize your MOTU device with an outside time reference such as word clock, you must pay careful attention to the synchronization connections and clock source issues discussed in the next few sections.

Do you need to sync?
If you will be using only your MOTU device’s analog inputs and outputs (and none of its digital I/O), and you don’t need to resolve your system to external word clock, you don’t need to make any sync connections. You can skip this section.

Situations that require synchronization
There are two general cases in which you will need to resolve your MOTU device with other devices:

- Synchronizing with other digital audio devices so that their digital audio clocks are phase-locked (as shown in Figure 4-9)
- Resolving your MOTU device to an external clock source
- Networking multiple MOTU AVB interfaces together

Synchronization is critical for clean digital I/O
Synchronization is critical in any audio system, but it is especially important when you are transferring audio between digital audio devices. Your success in using the digital I/O features on your MOTU device depends almost entirely on proper synchronization. The following sections guide you through several recommended scenarios.

Be sure to choose a digital audio clock master
When you transfer digital audio between two devices, their audio clocks must be in phase with one another — or phase-locked. Otherwise, you’ll hear clicks, pops, and distortion in the audio — or perhaps no audio at all.

There are two ways to achieve phase lock: slave one device to the other, or slave both devices to a third master clock. If you have three or more digital audio devices, you need to slave them all to a single master audio clock.

Also remember that audio phase lock can be achieved independently of timecode (location). For example, one device can be the timecode master while another is the audio clock master, but only one device can be the audio clock master. If you set things up with this rule in mind, you’ll have trouble-free audio transfers with your MOTU hardware.
SYNCING S/PDIF DEVICES
The 1248 provides RCA (coax) S/PDIF digital input and output. Your 1248 and the other S/PDIF device will sync to each other by way of the S/PDIF connection itself. One device is the master, and the other device is the slave.

Syncing the 1248 to its S/PDIF input
When you transfer audio from the S/PDIF device into the 1248, choose S/PDIF as the clock source (item #13 on page 18) to resolve the 1248 to its S/PDIF input.

S/PDIF input with sample rate conversion
The 1248 S/PDIF input provides sample rate conversion, which allows you to record any S/PDIF signal up to 96 kHz, even when the 1248 is resolved to other clock sources besides S/PDIF. See “S/PDIF with sample rate conversion” on page 46 for more information.

Syncing another S/PDIF device to the 1248
When transferring audio from the 1248 to another S/PDIF device, set the 1248’s clock mode (item #13 on page 18) to any source other than S/PDIF. Doing so makes the 1248 the clock master. When the other device records (or receives) S/PDIF audio (from the 1248), it will simply synchronize to the clock provided by the 1248 S/PDIF signal.

SYNCING OPTICAL DEVICES
There are several ways to sync an optical device with your MOTU interface:

A. Resolve the other device to your MOTU interface

B. Resolve your MOTU interface to the other device

C. Resolve both devices to a word clock source

For A, choose Internal (or anything other than Optical) as the clock mode in the Device tab (item #13 on page 18). Then configure the other device to resolve to its optical input.

For B, choose Optical as the clock mode (item #13 on page 18), and configure the other device to resolve to its own internal clock.

For C, choose Word Clock as the clock mode for the 24Ai or 24Ao (item #13 on page 18), and resolve the other device to its word clock input.

SYNCING WORD CLOCK DEVICES
The word clock connectors on your MOTU device allow you to synchronize it with a wide variety of other word clock-equipped devices.

For standard word clock sync, you need to choose an audio clock master (as explained in “Be sure to choose a digital audio clock master” on page 51). In the simplest case, you have two devices and one is the word clock master and the other is the slave as shown below in Figure 4-11 and Figure 4-12.
Daisy-chaining word clock

If necessary, you can daisy-chain several word clock devices together. When doing so, connect WORD CLOCK OUT from the first (master) device to the WORD CLOCK IN on the second device. Then connect its WORD CLOCK THRU port to the next device's WORD CLOCK IN port, and so on. On your MOTU interface, use its WORD CLOCK OUT port and change its operation from OUT to THRU in the Device tab of the MOTU AVB Control web app (item #15 on 18).

If you have more than four word clock devices that you need to synchronize, avoid chaining their word clock connections. Instead, use a word clock distribution device of some kind.

Word clock is not needed for AVB networking

When working with multiple MOTU AVB interfaces on an AVB network, synchronization is handled by AVB, so no word clock connections are necessary. See the next section for details.

SYNCING AN AVB NETWORK

The AVB protocol provides sophisticated and accurate timing, synchronization, and clocking features for AVB device networks of any size as shown on pages 40-41, including:

- Low latency
- Network-wide time base
- Better-than-sample-accurate phase lock across all connected devices
- Timing accuracy down to the nanosecond

Choosing a master clock

The web app provides an easy way to choose one device as the master clock for your whole MOTU AVB network.

1. Go to the Devices tab (page 18).

2. In the device list (item #1 on page 18), choose the MOTU interface you wish to use as the clock master.

3. Click the **Become Clock Master** button below the Clock Mode menu.

Now, all other MOTU AVB devices on the network are resolved to this device.

![Configuration](image)

Figure 4-13: Choosing a clock master.

Alternately, you can go to the clock mode menu for each individual device separately and choose the master clock device by hand. For example, you may be in a situation where at least one MOTU device on the network must remain resolved to its own clock (or another clock source). Just know that in this case, audio cannot be streamed between MOTU AVB devices that don't share the same master clock.

Resolving the master clock device to an external clock source

The MOTU device you've specified as the AVB network clock master can itself be resolved to an external time base such as word clock or optical. Just choose the desired clock source from its Clock
Mode menu (in the Device tab). Doing so effectively resolves the entire AVB network to the external clock source.

SYNCING MULTIPLE AVB AUDIO INTERFACES CONNECTED TO A MAC
There are several options for clocking multiple AVB audio devices connected to the Mac:

- You can resolve them to an external clock source (like word clock, if available).
- You can create an aggregate device, as usual. The aggregate device setup panel has a check box called Drift Correction, which sample-rate converts devices that are not synchronized.
Part 2

Using your MOTU interface
CHAPTER 5 Presets

OVERVIEW
Because of its advanced, extensive feature set, your MOTU AVB interface can be used for many different purposes. This chapter discusses common use cases and their corresponding device presets, to help you use the hardware for your needs.

Preset menu
The preset menu (item #7 on page 18) contains a number of presets specifically designed for common use cases. By loading the corresponding preset, your MOTU AVB interface routing tab and mixer will be reconfigured accordingly. You can visit the Routing and Mixing tabs to inspect settings and adjust them as needed.

Audio interface .. 57
Stand-alone mixer 58
Interface + mixer 58
Live recording with monitor mixing 59
Stage I/O .. 59
Studio Input expander 59
Studio Output expander 60
Optical converter 60

Create your own presets
You can create presets to suit your specific needs. Your MOTU device is highly capable and configurable, allowing it to perform many tasks simultaneously.

Video tutorials
To view several excellent video tutorials for the presets described in this chapter, visit:

www.motu.com/avb

AUDIO INTERFACE
Choose the Audio Interface preset to use your MOTU AVB device as a standard USB or Thunderbolt audio interface.

Figure 5-1: Using your MOTU AVB device as an audio interface.
STAND-ALONE MIXER
Choose the Stand-alone mixer preset to use your MOTU AVB device as a mixer. Doing so routes all physical inputs to the mixer with the mixer main out and monitor out going to two hardware output pairs.

To control the mixer (with the AVB Control web app), you have several options. You can connect a computer to your MOTU AVB device using USB, Thunderbolt, Ethernet, or Wi-Fi, as explained in “Setup for web app control” on page 43. Figure 5-2 below shows the WiFi scenario. Note that you can control the mix from multiple WiFi devices.

INTERFACE + MIXER
Choose the Interface + Mixer preset to use your MOTU AVB device as both an audio interface and mixer, simultaneously. Doing so routes all physical inputs and outputs to and from the computer, connected through USB or Thunderbolt. In addition, all MOTU AVB device inputs are routed to the mixer, which mixes them to the Main Mix bus. The Monitor bus is set up as a solo bus.

In this scenario, you would control the mixer from the MOTU AVB Control web app running on the computer. You can also run the web app from wireless devices on the same WiFi network as the laptop.

Figure 5-2: Using your MOTU AVB device as a stand-alone mixer. This example demonstrates how you can control the mixer from several WiFi devices.

Figure 5-3: Using your MOTU AVB device as an audio interface and mixer, simultaneously.
LIVE RECORDING WITH MONITOR MIXING
Choose the Live recording with monitor mixing preset when you are tracking in the studio. The setup is pretty much the same as for the “Interface + mixer” preset discussed in the previous section, shown in Figure 5-3 on page 58. All physical inputs on the interface are routed to both the computer (for recording) and the Main Mix and Monitor busses in the mixer (for near-zero latency monitoring).

STAGE I/O
Use the Stage I/O preset when you want to route audio inputs from musicians and instruments on stage to another location over Ethernet cabling. This preset routes all inputs and outputs on the MOTU AVB interface to 8-channel AVB network streams in the routing grid, which are then broadcast to any/all other devices on the same AVB Ethernet network.

Single AVB Ethernet “snake”
For example, you could have a single Ethernet cable running from the unit on stage to a 2nd unit at the Front of House (FOH) mixer.

STUDIO INPUT EXPANDER
Use the Studio Input Expander preset when you already have a main system set up, but you want to add additional inputs. This preset routes all physical inputs on the expansion MOTU AVB interface to AVB network streams. You can connect to these expansion streams in AVB Stream Connections section of the Device tab of the main MOTU AVB interface.

Stage I/O to network
As another example, you could run an Ethernet cable from the stage unit to a MOTU AVB Switch, with a host of other MOTU AVB interfaces and computers on a multi-device network.
STUDIO OUTPUT EXPANDER

Use the *Studio Output Expander* preset when you already have a main system set up, but you want to add additional outputs. This preset routes AVB network streams to all physical outputs on the expansion MOTU AVB interface. You must choose which network streams are used in the AVB Stream Connections section of the Device tab of the expansion MOTU AVB interface.

OPTICAL CONVERTER

Choose the Optical converter preset if you would like your MOTU AVB device to serve as a multi-channel analog-to-digital converter connected to another device equipped with an ADAT optical port.

For example, if you have a 1248, you could connect the 1248 optical output to the optical input on another non-AVB MOTU audio interface, such as an 828mk3 or 896mk3. The 1248 then serves as a multi-channel expander that adds additional mic, analog TRS and digital inputs to your setup. The benefit of connecting the 1248 optically is that you can seamlessly integrate the 1248’s inputs into the on-board no-latency monitor mixing in the other device, such as the CueMix mixing environment in MOTU mk3 interfaces.

![Figure 5-6: Use the Optical converter preset to connect additional audio inputs and outputs to another optical device. This example shows 1248 interface inputs being routed to the other optical device, but you could also do the same thing for outputs, even simultaneously.](image-url)
CHAPTER 6 The Front Panel LCD

OVERVIEW
The front panel LCD displays level meters for all inputs and outputs (except the phones). On the 1248 and 8M, the LCD also provides horizontal “long-throw” input metering when adjusting preamp gain.

On all models, the LCD provides several navigable menus that provide status information and basic hardware settings.

Level meters ... 61
Push-button Knobs 62
16A buttons .. 62
Automatic channel focus 58
Trim .. 62
ID ... 62
Menu Navigation .. 62
Device menu .. 63
Network menu ... 63
Settings menu ... 63
Presets menu ... 63
Version menu ... 63
Clock .. 63
ADAT SMUX Type .. 63
Stand-alone operation 63

LEVEL METERS
In its default state when the unit is first powered on, the LCD displays level meter activity for all physical audio inputs and outputs on the device. Inputs and outputs are labeled by channel number or left/right stereo configuration, if applicable.

The meters display from -42dBFS to 0dBFS, as shown by the labels to the left of the LCD display (Figure 6-1).

8M mic/guitar input meters with V-Limit™ compressor
On the 8M interface, all eight mic/line/instrument inputs are individually equipped with V-Limit™ (page 18), a hardware limiter that helps prevent digital clipping from overloaded input signals.

With the limiter turned off, signals that hit 0dBFS or above will clip (a hard digital clip). However, with V-Limit turned on, signals can go as high as +9 dBFS with no distortion due to digital clipping. If the signal goes above +9 dBFS, it will clip, even with V-Limit engaged. The small downward meter to the right of the channel’s meter indicates how much V-Limit is limiting the signal. Lookahead (page 18) enhances performance by anticipating peaks, but adds compensated delay (16 samples) to all inputs. Also see “Soft Clip™” on page 45.

Figure 6-1: V-Limit compressor on the 8M interface.
PUSH-BUTTON KNOBS
On the 1248 and 8M, the knobs (Figure 6-2) are push-button digital rotary encoders. Push the knob for the function labeled in blue.

16A BUTTONS
Instead of knobs, the 16A interface has equivalent buttons. Use the up/down arrow buttons to scroll through menus or settings.

AUTOMATIC CHANNEL FOCUS
When turning the knobs (on the 1248 or 8M) to adjust the preamp gain on a mic channel, the display switches to a larger, horizontal meter with numeric readouts for precise setup. A few seconds after you stop turning the knob, the display returns to the default view.

“PIN” CHANNEL FOCUS
When viewing a channel’s horizontal meter, push its knob (on the 1248 or 8M) to “pin” the LCD’s focus on the large meter view. The view is “pinned” to show the horizontal meter until the active channel’s knob is pushed again. Switch directly to another channel’s horizontal meter by pushing or turning its knob. Push the selected channel’s knob again to unpin.

TRIM
On the 1248 and 8M, push TRIM (Figure 6-2) to display the preamp gain settings for all mic inputs simultaneously, instead of viewing only the channel you are adjusting. You can then use the channel knobs to adjust each channel while viewing its setting relative to the other channels being displayed.

ID
Push ID (Figure 6-2) to immediately view the device’s network information, including its IP Address. Push back to return to the meters.

MENU NAVIGATION
Push SELECT (or SEL) to access the main menu, which provides settings and status information.

Main Menu
On the 1248 or 8M, turn the SELECT knob to scroll through the menu settings on the left side of the LCD. On the 16A, push the up/down arrow buttons to scroll through the equivalent menus and settings.

Push SELECT (or SEL) to enter the selected sub-menu (column of options to the right) or to select the currently highlighted parameter.

Push BACK to go to the parent menu.

To exit the menu entirely, push BACK repeatedly until the menu disappears from the display.

Device menu
The Device menu provides information about the device, such as its name and connection mode (Thunderbolt, USB, or AVB).
Network menu
The Network menu displays the following network-related information:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial/UID</td>
<td>Unique AVB network identifier that can be used for troubleshooting.</td>
</tr>
<tr>
<td>IP address</td>
<td>The unique network address for the unit. Type this address into your web browser to access the unit’s settings in the MOTU AVB Control web app.</td>
</tr>
<tr>
<td>AVB</td>
<td>Indicates whether AVB networking is currently enabled or disabled. For example, AVB could be disabled because a non-AVB switch is being used. When AVB is disabled, audio streaming over the network is disabled.</td>
</tr>
</tbody>
</table>

Settings menu
The Settings menu provides access to basic hardware settings, such as Clock Mode, Sample Rate, and so on.

<table>
<thead>
<tr>
<th>Setting</th>
<th>What it does</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock Mode</td>
<td>Sets the digital audio clock source for the device.</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>Sets the sample rate for the device.</td>
</tr>
<tr>
<td>Word Clock Thru</td>
<td>Sets the word clock output to OUT or THRU.</td>
</tr>
<tr>
<td>Word Clock Thru Mode</td>
<td>Toggles the Word Clock Output between OUT and THRU.</td>
</tr>
<tr>
<td>Optical</td>
<td>Specifies the SMUX format when operating at 88.2 or 96 kHz. See “ADAT SMUX Type” on page 63.</td>
</tr>
<tr>
<td>Configure IP</td>
<td>Chooses between DHCP and a manually assigned IP Address.</td>
</tr>
<tr>
<td>LCD Contrast</td>
<td>Adjusts the contrast of the LCD.</td>
</tr>
<tr>
<td>Factory Defaults</td>
<td>Restores factory default settings.</td>
</tr>
</tbody>
</table>

Version menu
The Version menu displays firmware version information.

CLOCK
The Clock section of the LCD displays the sample rate at which the unit is currently operating, and the current Clock Mode setting (item #13 in the Devices tab on page 18). The Clock Mode setting can also be found (and changed) in the Settings Menu.

ADAT SMUX TYPE
When your MOTU interface is operating at either 88.2 or 96 kHz, the Settings menu > Optical setting lets you configure ADAT SMUX type. There are two choices:

- Type I — interoperation with 3rd-party SMUX-compatible hardware products
- Type II — interoperation with compatible MOTU products

STAND-ALONE OPERATION
All settings, including mix settings and device settings, are saved in your MOTU interface’s memory. They remain in effect even when the interface is not connected to a computer. This allows you to use your MOTU device as a stand-alone mixer. You can make adjustments to any setting at any time from the web app running on a device that has a network connection to your MOTU interface, as explained in “Setup for web app control” on page 43.
CHAPTER 7 Working with Host Audio Software

OVERVIEW
Your MOTU interface provides multi-channel audio input and output for Core Audio compatible audio applications on the Mac and ASIO or Wave compatible applications on Windows, including MOTU’s Digital Performer and AudioDesk, Apple’s Logic Pro and GarageBand, and other third-party software applications such as Ableton Live, Avid Pro Tools, Cockos Reaper, Propellerhead Reason and Record, Steinberg Cubase and Nuendo, Cakewalk SONAR, PreSonus Studio One, Bitwig, and others.

AudioDesk is available as a free download for MOTU interface owners at motu.com/avb. For complete information about all of AudioDesk’s powerful workstation features, refer to the AudioDesk User Guide.pdf included in the AudioDesk application.

Digital Performer, MOTU’s state-of-the-art digital audio workstation software, is available separately; for details about upgrading from AudioDesk to Digital Performer, talk to your authorized MOTU dealer or visit motu.com.

RUN THE WEB APP
Before you run your host audio software, launch the web app to configure your MOTU hardware.

The web app lets you configure important settings in your audio interface, enable the desired inputs and outputs, and set up audio streams to and from the computer.

Sample rate
Choose the desired sample rate for your interface and your host audio software. Newly recorded audio will have this sample rate.

Clock Mode
This setting is important because it determines the master digital audio clock for your system.

If you do not have any digital audio connections to your MOTU device (you are using the analog inputs and outputs only), and you will not be resolving your host software to word clock or another external clock source, choose Internal.

If you have devices connected to the optical ports, see “Choosing a clock source for optical connections” on page 46.

If you are slaving your MOTU device and your host software to word clock, follow the directions in “Syncing word clock devices” on page 52.

Enabling and disabling input/output banks
In the web app Device tab (page 19), enable all input and output banks on your MOTU device that you wish to make available to your host audio software. Disable banks you are not using to simplify operation.
Specifying the number of computer channels
In the web app Device tab (page 19), in the Computer Setup section, specify the number of computer channels for streaming audio to and from your host audio software. You might want enough channels to cover the following:

- Physical inputs you want to record on your computer.
- The physical outputs you want to send audio playback to.
- Any audio streams going to and from the on-board mixer in your MOTU device.
- Any audio streams going to and from the AVB network, if you have multiple networked MOTU AVB devices.

If you aren’t sure how many channels you’ll need, visit the Routing tab, as explained below.

Making inputs and outputs available to your host software
In the web app, use the Routing tab (page 20) to map inputs and outputs to computer channels, as demonstrated in Figure 7-1 and Figure 7-2.

Figure 7-1: An example of routing computer channels (from host audio software) to physical outputs on a 1248. The two headphone outs are mirroring the main outs (channels 1-2 from the computer). In this example, 30 channels are being used for streaming from the host computer, but more can be added for streaming to the AVB network or the on-board 48-channel mixer in the 1248.
Configuration presets
The presets menu (item #7 in the Devices tab on page 18) provides many useful presets for various host routing scenarios. These presets are a convenient shortcut for the routing grid setups discussed in the next few sections.

Naming computer input and output channels
Click on any computer input or output name in the routing grid (Figure 7-1) to change its name. These names appear in your host audio software (but only if your MOTU interface is connected to the computer with Thunderbolt, and only if your host software supports audio channel names).

Streaming computer audio to and from the on-board mixer
In Figure 7-1, you’ll see “mix” inputs across the top of the grid (Main, Monitor, Aux, etc.) These are output busses from your interface’s on-board mixer. To route one of these mix busses to your host computer software, click the grid at the intersection of the mix column and desired computer channel row. Now, the mix bus output will be routed to the computer via the channel you selected.

![Figure 7-2: An example of routing physical inputs on the 1248 to computer channels (for host audio software). In this example, S/PDIF input is on channels 23-24 going to the computer, and 24 channels total are being used for streaming to the host computer, but more can be added for other inputs from the mixer or AVB network, if any.](image-url)
Conversely, you can stream audio from the computer into the mixer. Channels coming from the computer are represented across the top of the routing grid as inputs. To route a computer channel to the mixer, click the grid at the intersection of the computer channel column and the desired mix input row. Now, that computer channel will be routed to the mixer input.

Working with AVB network streams
Audio channels going to networked AVB interfaces can be streamed to and from your host audio software through the MOTU interface connected directly to the computer. For information about how to set this up, see “Mapping computer channels to network streams” on page 83.

Mirroring computer channels to multiple outputs
Figure 7-1 shows an example of mirroring one stereo audio stream from your host audio software to several outputs. In the example, computer channels 1-2 are being sent to the main outs, plus phones 1-2 and phones 3-4. To route an input to multiple outputs, click multiple boxes in its column, (see computer channels 1-2 in Figure 7-1).

Combining multiple inputs to one output
To merge (mix) any channels in the grid (computer streams or otherwise), route them to mixer inputs and then use the on-board mixer (“Mixing tab” on page 21).

Routing grid tutorials
For further information about using the routing grid, including many useful tips and techniques, visit:

www.motu.com/techsupport/technotes/avbrouting

CHOOSING THE MOTU AUDIO DRIVER
Once you’ve made the preparations described so far in this chapter, you're ready to run your audio software and enable the MOTU AVB audio driver, which allows your host software to use your MOTU interface.

For Mac OS X audio software
For audio software running under Mac OS X, go to the menu item or preference where you choose the audio device (Core Audio driver) you wish to use, and then select your MOTU interface by name.

For Windows audio software
For audio software running under Windows, go to the menu item or preference where you choose the ASIO driver you wish to use, and then choose MOTU AVB USB ASIO. If your host audio software doesn't support ASIO, choose the MOTU AVB USB AUDIO Wave driver instead.

![Figure 7-3: Choosing the MOTU AVB ASIO driver in Cubase.](image-url)
Where to go in popular audio hosts
Here is the location for this setting in various popular audio software host applications:

<table>
<thead>
<tr>
<th>Host software</th>
<th>Location for choosing your MOTU interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Performer and AudioDesk</td>
<td>Setup menu > Configure Audio System > Configure Hardware Driver</td>
</tr>
<tr>
<td>Pro Tools 9 or later</td>
<td>Setup menu > Playback Engine or Current Engine</td>
</tr>
<tr>
<td>Logic Pro</td>
<td>Preferences > Audio tab > Devices tab > Core Audio tab</td>
</tr>
<tr>
<td>Garage Band</td>
<td>Garage Band menu > Preferences > Audio/ MIDI > Audio Output/Input menus</td>
</tr>
<tr>
<td>Cubase and Nuendo</td>
<td>Device Setup > Devices list > VST Audio System menu</td>
</tr>
<tr>
<td>Live</td>
<td>Preferences > Audio tab</td>
</tr>
<tr>
<td>Reason</td>
<td>Preferences > Audio preferences</td>
</tr>
<tr>
<td>Reaper</td>
<td>Preferences > Audio prefs > Devices</td>
</tr>
</tbody>
</table>

Other audio software
Consult your software’s manual for further information.

REDUCING MONITORING LATENCY
Monitoring latency is a slight delay caused by running an input signal through your host audio software and back out. For example, you might hear it when you drive a live guitar input signal through an amp modeling plug-in running in your audio sequencer.

This delay is caused by the amount of time it takes for audio to make the entire round trip through your computer, from when it first enters an input on your MOTU interface, passes through the interface hardware into the computer, through your host audio software, and then back out to an output.

Monitoring through your MOTU interface
If you don’t need to process a live input with plug-ins, the easiest way to avoid monitoring latency is to disable your DAW’s live monitoring feature and instead use the digital mixer in your MOTU interface to route the input directly to your outputs. For details, see “Mixing tab” on page 21. The mixer in your MOTU interface even provides zero latency effects processing (EQ, compression and reverb), which can be applied to the signal.

Direct hardware playthrough / Direct ASIO monitoring
When managing your live monitor mix through your MOTU interface mixer, remember to disable your DAW’s live monitoring features, so that you won’t hear record-enabled tracks in your DAW. Also note that your MOTU AVB interface does not support Direct Hardware Playthrough in Digital Performer, or the Direct ASIO Monitoring feature (or similar) offered and other DAWs, which lets you control no-latency hardware monitoring from within the host application. Instead, you can use the MOTU AVB Control web app mixer (“Mixing tab” on page 21) to make these live monitoring connections manually.

If you don’t require any effects processing on the input signal (no reverb or compression, for example), all this takes is one click in the routing grid to route the input being recorded to the output you are using for monitoring.

If you are recording a mono input that you’d like to monitor in stereo, or if you need to apply effects to the monitored signal, you can simply route the input to the mixer in your MOTU interface. This is done by opening the Mix In group in the Outputs column along the left side of the grid (Figure 7-2 on page 67), and clicking the tile at the intersection of the input’s column and the desired mixer input’s row. Once routed to the mixer, use the input channel, reverb bus, and monitor bus in the mixer to apply effects as desired, and perhaps include other channels to the mix, and then assign the monitor bus output in the routing grid to the output you are using for monitoring.
In either case (routing directly in the grid or routing through the mixer), be sure to maintain the input's connection to the computer as well, so the input signal can be recorded in your host software. In other words, you'll want to make sure there are two tiles enabled in the input's column in the grid: one tile for the connection to the computer and another tile for your monitoring output (or a mixer input, if you are using the mixer to apply effects). If you need to route the input signal to other destinations, too, you can certainly do so (you can route the input to multiple destinations).

Monitoring through your host audio software

If you do need to process a live input with host software plug-ins, or if you are playing virtual instruments live through your MOTU audio hardware, you can significantly reduce latency by adjusting the audio buffer setting in your host audio software, as explained in the next section.

It is important to note that monitoring delay has no effect on the recording, or playback, of audio data from disk. The actual recording and playback is extremely precise, it is only the monitoring of your live input signal which may be delayed.

Adjusting your host software audio buffer

Buffers are small bundles of audio data. Your interface “speaks” to your computer in buffers, rather than one sample at a time. The size of these buffers determine how much delay you hear when monitoring live inputs through your audio software: larger buffers produce more delay; smaller buffers produce less.

Adjusting buffer size on Mac OS X

Under Mac OS X, audio I/O buffer size is handled by the host audio application (not by your MOTU interface's Core Audio driver). Most audio software applications provide an adjustable audio buffer setting that lets you control the amount of delay you'll hear when monitoring live inputs or processing them with software plug-ins. Here are a few examples.
Figure 7-6: In Logic Pro, go to the Audio Driver preferences to access the Buffer Size option shown above.

Adjusting buffer size on Windows
To adjust buffer size on Windows, visit the MOTU AVB USB Control Panel. See “MOTU AVB USB Control Panel” on page 34.

Lower latency versus higher CPU overhead
Buffer size has a large impact on the following:

- Monitoring latency
- The load on your computer’s CPU
- Responsiveness of transport controls and effect knobs in AudioDesk, Digital Performer or other audio software.
- Real-time VI latency.

The buffer setting presents you with a trade-off between the processing power of your computer and the delay of live audio as it is being patched through your software. If you reduce the size, you reduce monitoring latency, but significantly increase the overall processing load on your computer, leaving less CPU bandwidth for things like real-time effects processing. On the other hand, if you increase the buffer size, you reduce the load on your computer, freeing up bandwidth for effects, mixing and other real-time operations.

If you are at a point in your recording project where you are not currently working with live, patched-thru material (e.g. you’re not recording vocals), or if you have a way of externally processing inputs, choose a higher buffer size. Depending on your computer’s CPU speed, you might find that settings in the middle work best (256 to 1024).

Transport responsiveness
Buffer size also impacts how quickly your audio software will respond when you begin playback, although not by amounts that are very noticeable. Lowering the buffer size will make your software respond faster; raising the buffer size will make it a little bit slower.

Effects processing and automated mixing
Reducing latency with the buffer size setting has another benefit: it lets you route live inputs through the real-time effects processing and mix automation of your audio software.

WORKING WITH ON-BOARD MIXING AND EFFECTS
Your MOTU interface provides powerful mixing, EQ, compression and reverb, which can operate hand-in-hand with your host’s mixing environment. For example, your MOTU interface can serve as a monitor mixer, routing channels to musicians, or it can serve as an integrated extension of your host’s mixing environment.
can even save a particular mixing configuration as a preset for future recall. For details, see “Mixing tab” on page 21.

SYNCHRONIZATION
You may encounter situations in which you need to synchronize your audio software and your MOTU interface to other components of your system. For details, see “Synchronization” on page 51.
CHAPTER 8 Mixer Effects

OVERVIEW
This chapter provides further information about the effects processors available in the DSP mixer in your MOTU AVB interface. For basic mixer operation, see:

Mixing tab ... 21
Aux Mixing tab 22
Mixer input channel strips 23
Main Mix and Monitor channel strips 24
Aux bus channel strips 25
Group and Reverb channel strips 26

Powerful DSP-driven mixing and effects
The mixer is driven by a powerful DSP that delivers 32-bit floating point precision and plenty of processing bandwidth for no-latency effects, including parametric EQ, dynamics, and reverb. Effects can be applied when operating as an audio interface or as a stand-alone mixer without a computer. Input signals to the computer can be recorded wet and/or dry, or recorded dry while a real-time wet monitor mix is sent to musicians. Effects include:

High Pass Filter 73
A conventional high pass filter

Gate .. 74
A standard gate with threshold/attack/release controls

Four-band parametric EQ 74
Multi-band parametric EQ modeled after British analog consoles

Compressor .. 75
A standard compressor with threshold/ratio/attack/release/gain controls

Leveler .. 76
The Leveler™, an accurate model of the legendary LA-2A optical compressor, which provides vintage, musical automatic gain control

Reverb .. 77
Classic reverb with tail lengths up to 60 seconds

Advantages over host-based mixing and processing
The hardware mixer in your MOTU AVB interface provides several major advantages over mixing and processing in your host audio software:

- No buffer latency. The DSP mixer provides the same near-zero latency throughput performance as a conventional digital mixer. Effects processing doesn't impact your computer's CPU.
- DSP mixing and routing can be maintained independently of individual software applications or projects.
- DSP-driven mixing can function without the computer, allowing your MOTU AVB device to operate as a portable, stand-alone mixer with effects.
- Effects are disabled when operating at 4x sample rates (176.4 or 192 kHz).

HIGH PASS FILTER
All input channel strips provide a 12 dB per octave high pass filter. High Pass filters are often used to remove unwanted mic rumble, for example.

Figure 9-1: The High Pass Filter
GATE
All input channel strips provide a Gate module.

The gate silences the signal when the input signal’s level drops below the Threshold.

The rate at which the gate responds, (opens to let signal through) is determined by the Attack parameter. With a short Attack time, the gate will open as soon as the signal crosses the Threshold; with longer Attack times, the gate will gradually open, much like a fade-in.

When the input level falls back below the Threshold, the time it takes for the gate to close (how quickly the signal is attenuated), is determined by the Release parameter. Short Release times will close the gate quickly, abruptly attenuating your signal, versus longer release times, which will gradually attenuate your signal, like a natural fade-out.

FOUR-BAND PARAMETRIC EQ
All mixer channel strips, (except for the Monitor bus), provide modeled, four-band parametric EQ.

Vintage EQ
Inspired by legendary British large console EQs, the EQ section (Figure 8-2) models the sound of the most sought-after classic equalizers. Four bands of center frequency parametric EQ filtering are provided, each with a bandwidth control. The High and Low bands include a shelf filtering option. With 32-bit floating point precision, the vintage EQ has been carefully crafted and meticulously engineered to produce musical results in a wide variety of applications.

Enabling EQ
Each band has an enable/disable button (Figure 8-2), allowing you to enable as few or as many bands as needed for the channel strip.

EQ filter controls
The EQ filters have three controls:

<table>
<thead>
<tr>
<th>Control</th>
<th>unit</th>
<th>range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>dB</td>
<td>-20.00 to +20.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>Hertz</td>
<td>20 to 20,000</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Octaves</td>
<td>0.01 to 3.00</td>
</tr>
</tbody>
</table>

Double-click a knob to return to its default position.

EQ filter characteristics
EQ is one of the most widely used processing tools and can be applied to many different situations, from minor corrective tasks to creative tone sculpting. The four-band EQ has been designed to
be flexible enough to cover a broad range of applications. By adjusting Gain and Bandwidth together, you can emulate the smooth and musical character of classic analog EQ circuits, in which the Gain/Bandwidth dependency was dictated by the actual circuit design and electrical components used.

Low and high shelf filters
The Low and High bands offer a shelf option that is similar to those found in most conventional parametric EQs.

COMPRESSOR
All mixer input channel strips provide a compressor module.

![Figure 8-3: The Compressor module.](image)

The *Compressor* (Figure 8-3) lowers the level of the input when amplitude of the signal is above the Threshold. The amount of attenuation is determined by the *Ratio* and the input level. For example, if the input is 6 dB above the *Threshold* and the Ratio is 3:1, the compressor will attenuate the signal to 2 dB above the Threshold. When the input level goes above the threshold, the attenuation is added gradually to reduce distortion. The rate at which the attenuation is added is determined by the *Attack* parameter. Likewise, when the input level falls below the Threshold, the attenuation is removed gradually. The rate at which the attenuation is removed is determined by the *Release* parameter. Long Release times may cause the audio to drop out briefly when a soft passage follows a loud passage. Short Release times may cause the attenuation to “pump”, a term used to describe the sound of the compressor when the average input level quickly fluctuates above and below the Threshold. These types of issues can be addressed by adjusting the compressor’s parameters, or applying the Leveler instead. *Gain* adjusts the overall output level of the compressor, post processing. The Level meter (Figure 8-3) shows the level of the input signal entering the compressor. It shows either the Peak envelope or the RMS level, if enabled.

Gain reduction meter
The Gain reduction meter (Figure 8-3) displays the current amount of attenuation applied by the compressor, before the makeup gain stage.

RMS mode
By default, the compressor operates in Peak mode, which uses signal peaks to determine the input level. In RMS mode, the compressor measures the input signal's loudness, using the root-mean-square computational method. When RMS is disabled, RMS mode will let brief peaks through because the detector sidechain is only looking at the average signal level. By contrast, peak mode will catch those brief peaks. Peak mode is generally used for drums, percussion and other source material with strong transients, while RMS mode is mostly used for everything else.

The level meter shows either the peak level or the RMS level, depending on the mode.
LEVELER

The Leveler™ (Figure 8-4) provides an accurate model of the legendary Teletronix™ LA-2A® optical compressor, known for its unique and highly sought-after Automatic Gain Control (AGC) characteristics.

![Figure 8-4The Leveler module.](image)

The Leveler is available on the Main Mix bus and all Group busses, including the Reverb bus.

A model of an optical compressor

An optical leveling amplifier works by shining a light on a photoresistor. The intensity of the light source is proportional to the audio signal, and the resistance of the photoresistor is in turn inversely proportional to the intensity of the light. Photoresistors respond quite quickly to increases in light intensity, yet return to their dark resistance very slowly. Thus, incorporation of the photoresistor into an attenuator followed by an amplifier which provides make-up gain produces a signal which maintains a constant overall loudness.

Automatic gain control using light

The AGC circuit of the LA-2A uses a vintage optocoupler known by its model number T4. The T4 contains an electroluminescent-panel (ELP) and photoresistor mounted so that the emission of the panel modulates the resistance. An ELP consists of a thin layer of phosphorescent material sandwiched between two insulated electrodes to form a capacitor. Making one of the electrodes transparent allows the light to escape. These devices are essentially glow-in-the-dark paint on a piece of foil covered by metalized glass or plastic, and are the same devices used in low-power night lights. Unfortunately, these devices need high voltages to operate, and are best driven by tube circuits which can supply voltage swings of several hundred volts.

Response characteristics

Once the light has faded away, the photoresistor then decays back to its dark state. The shape of the decay curve varies depending on how bright the light was, and how long the light lasted. A general rule of thumb is that the louder the program, the slower the release. Typically, the release can take up to and over one minute. One thing to keep in mind when using these types of devices is that the typical concepts of compression ratio, attack, release, and threshold do not apply. The light intensity is determined by the highly non-linear interactions of the input signal, AGC circuit, and ELP, and thus exhibit a strong program dependence that is impossible to describe without the mind-numbing mathematics of statistical mechanics. The actual results, however, can be almost mystical: even when you feed the same material (a loop perhaps) through the Leveler twice, you’ll often see a new response the second time through a loop, complete with unique attack times, release times and compression ratios. Furthermore, two different input signals with the same RMS levels may be leveled in a drastically different manner.

It is precisely this self-adjusting behavior that makes optical compressors the tool of choice for smoothing out vocals, bass guitar and full-program mixes without destroying perceived dynamics.
Enabling or disabling the Leveler
The Leveler models the LA-2A so closely, it also models the time it takes for an actual LA-2A to “warm up” after it is turned on. Therefore, when you enable the Leveler, give it a moment to “settle” before you begin processing signals with it.

Gain Reduction
Gain Reduction (Figure 8-4) sets the strength of the signal sent to the AGC model.

Makeup Gain
Makeup gain (Figure 8-4) amplifies the output signal to make up for gain reduction.

Limit button
The Limit button (Figure 8-4) models the original LA-2A Limit/Compress mode switch. The effect is very subtle, with the Limit option behaving only slightly more like a limiter than a compressor. The switch increases the level of the input to the AGC model and runs the attenuator at a slightly lower level. The Leveler then responds more strongly to transients, but otherwise still behaves like a leveling amplifier.

REVERB
Use the enable/disable button (Figure 8-5) to turn the reverb processor on or off. Since reverb uses considerable DSP resources, it is best to leave it off when you are not using it.

Routing inputs and groups to the reverb processor
The reverb processor is a single, independent unit that provides stereo reverb. You can route any input channel or Group bus to the Reverb processor with the Reverb send on its channel strip. All incoming signals to the reverb processor are merged and processed together. The resulting stereo output from the reverb can then be merged into the Main Mix bus with the Main send on the Reverb channel strip (item #6 on page 26).

Reverb Time
Reverb time (Figure 8-5) determines the length of decay, or tail, of the reverb. The knob’s range is from 100 milliseconds to 60 seconds.

Predelay
Predelay is the amount of time before the acoustic energy from the source returns to the listener, after reflecting off the surfaces of the listening space. The very first reflections helps you perceive information about the listening space, (size, distance, surface type, etc.). In large rooms, it takes a while (on the order of milliseconds) before the first reflections return to the listener. Predelay is useful for adding clarity, as it delays these reflections, before the onset of full reverberation. For example, with pre-delay added to vocals, the reflections won’t start until after the initial sound of a word has been sung.

Spread
Spread controls stereo imaging. A position of 12 o’clock produces essentially a mono image. Turning the control all the way to the left completely swaps the stereo image.

High and Mid frequency bands
The High and Mid frequency bands let you independently control the reverb time for separate frequency bands, relative to the low frequency reverb time. The High setting represents the bottom frequency of the High band; the Mid
setting represents the bottom frequency of the Mid band. The *Ratio* determines the length for each band specified in a percentage of the low frequency reverb time.

DSP USAGE
The DSP Usage meter (item #26 on page 23) shows how much of the available DSP processing power is currently being used by the mixer for the mix and for effects processing. If there aren’t enough DSP resources for all effects to be enabled on a channel, effects are disabled for that channel and all subsequent channels.

Unlike other effects, HPF and EQ on a stereo channel requires approximately twice the DSP resources as on a mono channel.
CHAPTER 9 Networking

OVERVIEW
The Audio Video Bridging (AVB) network port on your MOTU interface opens up a world of possibilities for creating expanded, customized audio network systems.

About AVB .. 79
MOTU’s AVB implementation 80
Networking examples .. 80
A quick guide to networking 82
Setting up a MOTU AVB interface for networking ... 83
Mapping audio to network streams 83
Mapping computer channels to network streams 83
Bridging to Ethernet .. 83
The MOTU AVB Switch 83

ABOUT AVB
Audio Video Bridging (AVB) is an extension of the Ethernet standard developed by the IEEE (802.1 standards committee) specifically to add high-performance audio and video networking. AVB brings together the worlds of networking technology and high-end audio. Here is a brief summary of some of the immediate benefits of AVB for you, as a MOTU AVB interface user:

■ An open industry standard — AVB has been developed by the IEEE as an international standard specification. It is not proprietary or controlled by one company.
■ High channel counts — AVB provides hundreds of network channels.
■ Extremely low latency — AVB guarantees low-latency, real-time performance.
■ Guaranteed Quality of Service (QoS) — AVB’s Stream Reservation Protocol provides Guaranteed Quality of Service for each and every audio stream. If the network cannot continuously maintain every bit of every sample in the audio stream, it will not allow you to make the network connection in the first place. AVB streams are prioritized over other network traffic to ensure high performance.
■ Network-wide clocking and sync — AVB devices all clock together over your network for better-than-sample-accurate phase lock across all connected devices. Timing accuracy is down to the nanosecond.
■ True plug-and-play operation — AVB has been designed from the ground up to provide automatic device discovery, enumeration, and connection management. Just plug your MOTU AVB interfaces into a standard AVB switch and go. If you wish to make stream connections and have the ability to select media clock, you must use the web app, or some other AVB controller. You don’t need an IT professional to configure the network. AVB is a self-managing network protocol.
■ Bridging to standard Ethernet — AVB cooperates with standard Ethernet networks, for connecting traditional Ethernet devices like wireless routers, switches, or any other non-AVB-aware device.
■ Support for existing network infrastructure — Replace your existing switches with standard AVB-compatible switches, and your CAT-5e or CAT-6 wired infrastructure now supports AVB.
■ Long cable runs — a single AVB network connection can run up to 100 meters with a standard copper wire CAT-5e or CAT-6 cable. Fiber-optic cable runs can be much longer. With multiple switches, you can create a network that covers very large distances, if necessary. You can use up to seven “hops” (switch-to-switch connections).
AVB is already shipping on current Macs — Apple supports AVB on all current shipping Macs, and your MOTU interface can operate as a standard AVB audio interface when connected to your Mac’s AVB-equipped Ethernet port.

MOTU’s AVB Implementation
MOTU engineering has faithfully implemented the IEEE 802.1 AVB standard for the MOTU AVB products. This means that MOTU devices are fully interoperable with any 3rd party AVB-compatible device. In addition, MOTU has fine-tuned AVB operation among MOTU AVB devices for optimum performance, within the AVB specification. Here is a brief summary of advantages you will enjoy when using MOTU AVB devices together in a network:

- 256 channels of host I/O — MOTU AVB interfaces equipped with Thunderbolt (the 1248, 8M, 16A and 112D) support 256 simultaneous channels of audio I/O (128 in, 128 out) to and from the entire network.
- Support for multiple computer hosts — All computers and all network devices run in sync with each other, resolved to the network’s master clock.
- Gigabit Ethernet — The MOTU AVB Switch delivers 1 Gbit Ethernet performance, which provides substantially higher bandwidth than 100 Mbit Ethernet. This allows you to have many more devices on the AVB network.
- Over 500 channels of network audio — MOTU’s AVB network can stream over 500 channels of audio throughout the network. Depending on the model, some MOTU AVB devices can broadcast sixteen 8-channel network streams and simultaneously listen to sixteen 8-channel network streams.

Exceptionally low network latency — Standard AVB network latency is 2 ms. MOTU AVB network latency is an astonishing 0.6 ms, even over seven “hops” (switches) and hundreds of meters of cable. By comparison, other commercially available, proprietary audio network protocols have variable (unpredictable) network latency in the range of 2-5 ms.

- Star configuration — MOTU AVB supports a star network configuration, which is much more flexible than daisy-chain scenarios, which depends on all devices in the chain.
- Web interface — MOTU AVB devices can be controlled from the MOTU AVB Control web app, which runs within any web browser on any networked laptop, tablet, or smart phone. Although the web app shares the network with AVB, AVB audio streams are never compromised because AVB streams over the network traffic.
- Bridging to standard Ethernet — the MOTU AVB Switch provides an extra standard Ethernet port for bridging to your local Ethernet network, Wi-Fi, etc. for command and control, internet access, and other standard network traffic. All ports allow connection to standard (non-AVB) network devices, however, the “Ethernet” port is suggested because it does not support AVB.

Networking Examples
Networking comes into play as soon as you hook up a second MOTU interface to your first one, as explained in “Setup for two interfaces” on page 39, to add more I/O to your studio. Here are just a few examples of what is possible.

Personal Studio Expansion
Let’s say you have a 1248 mounted in a rack next to your computer. You could add an 8M interface and position it across the room, near your drum kit, for placing up to 8 mics on the drums. All the mic cabling is kept near the drums, and you have one simple, clean network cable running back to your

80 Networking
computer system. Despite the distance, the two interfaces operate as a seamless system, controlled from your computer or iPad.

Studio installation
A studio installation of three to five interfaces can be handled with a single MOTU AVB Switch. See “Setup for three to five interfaces” on page 40.

Networking is ideal for studio installation because you can position interfaces at strategic locations. Running cables becomes much simpler and more cost effective. Not only does a setup like this give you access to all I/O from your computer, even multiple computers, you can also route audio from any input to any output across devices with near zero latency. You can also route audio from one computer to another with very low latency. As a simple example, you could deploy several interfaces in a studio as follows:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Location</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1248</td>
<td>Control room</td>
<td>General I/O in control room, outputs to main speakers, etc.</td>
</tr>
<tr>
<td>1248</td>
<td>Iso booth</td>
<td>Local mic and instrument I/O in the iso booth.</td>
</tr>
<tr>
<td>1248</td>
<td>Studio room</td>
<td>General purpose I/O for studio A</td>
</tr>
<tr>
<td>8M</td>
<td>Studio room</td>
<td>More mic inputs, or additional mic inputs for drum kit</td>
</tr>
<tr>
<td>8M</td>
<td>Studio room drum kit</td>
<td>8 more mics on the drum kit</td>
</tr>
<tr>
<td>16A</td>
<td>Machine room</td>
<td>Analog I/O and patch bay for rack mounted gear</td>
</tr>
</tbody>
</table>

Large studio facility
In a larger studio facility, you could build audio network neighborhoods similar to the studio installation described earlier in multiple rooms, even multiple floors, with multiple computers and WiFi control from anywhere in the facility. All computers and devices can see each other and you can stream audio anywhere on the network with near-zero latency, as if any two devices were connected directly to each other.

Concert systems
Concert systems must be flexible so they can adapt to each new venue while on tour. Because of its modular nature, AVB networking allows you to design systems that are scalable and easy to adapt to each venue. You can easily bring devices on and offline, rerouting audio stems as needed.

Because MOTU AVB networking employs a star configuration, instead of daisy-chaining, you can set up backup computer playback systems on a shared network. For example, in a concert setting, if one computer system goes down, the backup system can be brought on line instantly through the same network infrastructure.

Traditionally, live performance setups often have separate domains for front of house mixing, monitor mixing, computer backline, and other systems. With MOTU AVB networking, these systems can be unified on the same network, opening up many possibilities for shared resources and mixing/routing responsibilities, especially from multiple sources (laptops, iPads, tablets, etc.) MOTU AVB networking handles audio in convenient 8-channel stems, making large-scale network management more manageable. MOTU AVB’s very low latency makes it particularly suitable for line arrays and sound reinforcement.

Large-scale venues
With long cable runs and industry standard networking infrastructure, MOTU AVB systems are well-suited for large-scale commercial installations such as arenas, stadiums, theme parks, clubs, casinos, houses of worship, broadcast facilities, schools, universities, and so on. Audio streams can travel long distances with sub-millisecond latency through as many as seven switches. Audio can be distributed from a centralized location to anywhere in the venue.
A QUICK GUIDE TO NETWORKING

MOTU AVB networking has been designed to be powerful, yet straightforward to set up and use. Here are a few things that are useful to know.

Networking basics

■ Before proceeding below, review the networking connection diagrams on pages 39-41.

■ To make network connections, use shielded CAT-5e or CAT-6 cables (a higher grade cable).

■ Network cable lengths can be long: 100 meters with standard copper wire cables; much longer with fiber-optic network cables.

Working with AVB switches

■ Networks of three or more interfaces require an AVB-compatible switch. You can use any standard AVB switch on the market. MOTU offers the five-port MOTU AVB Switch™ (sold separately).

☛ A non-AVB compatible switch will not work.

■ Connect MOTU AVB interfaces to any AVB Switch using their NETWORK ports.

■ On the MOTU AVB Switch, connect MOTU interfaces to the five AVB NETWORK ports (not the Ethernet port). Connect the Ethernet port to a WiFi router, your Local Area Network (LAN) or your computer (for running web app only).

■ You can daisy-chain switches in serial fashion, but don’t create loops. For example, in the network below, do not make any additional connections between any two switches.

■ AVB audio can’t pass through more than seven switches. However, you can daisy-chain more than seven switches and route audio freely among them. You just won’t be able to create point-to-point connects that span more than seven switches.

Working with computers on a network

■ Computers are not required for network operation, as you can control the network from iPads, tablets and smart phones.

■ To add computers to the network, connect them to any interface using Thunderbolt (which offers the highest possible channel counts). If Thunderbolt is not available, use USB.

■ A computer can be connected to the network through its Ethernet port, but only for the purposes of running the web app on the computer for command and control over the network. (In this scenario, you won’t be able to stream audio to/from the network from the computer.)

■ All computers and interfaces on the network have full access to each other.

■ MOTU employs a 1 Gbit AVB implementation in the MOTU AVB Switch. The switch allows routing of many audio channels on the network.
SETTING UP A MOTU AVB INTERFACE FOR NETWORKING
Depending on the model, MOTU AVB interfaces have the ability to broadcast up to sixteen 8-channel streams to the rest of the network. Conversely, it can "listen" to as many as sixteen 8-channel streams from anywhere else in the network. The specific number of streams supported depends on the model.

For each device on the network, set it up for network operation as follows:

1. In the MOTU AVB Control web app, choose the device (item #1 on page 18).
2. Go to the Device tab (item #5 on page 18), go to the AVB Stream Setup section (item #27 on page 19), and type in the number of 8-channel input and output streams you want for that device.
3. Go to the AVB Stream Connections section (item #9 on page 19), and choose the network stream you want the device to listen to for each bank.
4. Use the Routing tab to map specific I/O channels within each MOTU AVB interface to its network input and output streams, as explained in the next section.

MAPPING AUDIO TO NETWORK STREAMS
Once you've configured a device's AVB streams, as explained above, use the Routing tab (page 20) to map audio channels to network input and output streams.

Input streams (coming from the rest of the network) are listed across the top of the routing grid. Expand the stream and click on the grid to map incoming network channels to local destinations, including physical outputs on the device, computer channels (to a connected computer), or mixer channels.

Output streams being broadcast to the rest of the network are listed in rows along the left side of the grid. Expand each stream bank and map individual network output channels to local sources, such as physical inputs on the interface, channels coming from the computer, or channels coming from the device's mixer.

MAPPING COMPUTER CHANNELS TO NETWORK STREAMS
If a host computer is connected to an interface (through Thunderbolt or USB), mapping network input and output streams is accomplished as described in the previous two sections. Simply enable AVB streams as desired, and map them to computer channels in the Routing grid.

If, while mapping, you run out of computer channels, enable more in the Computer Setup section of the Device tab (item #22 on page 19). If the computer is connected with Thunderbolt, you can enable a maximum of 128 channels in and out. If the computer is connected with USB, performance will vary, depending on the sample rate and other factors.

BRIDGING TO ETHERNET
The Ethernet port on the MOTU AVB Switch allows you to connect standard network devices, such as:

- A WiFi router
- An Ethernet hub or switch connected to a local home, studio, or office network
- Any other standard networking device

THE MOTU AVB SWITCH
The heart of a MOTU AVB network is the MOTU AVB Switch (sold separately). For a brief overview of the switch and its features, see “MOTU AVB Switch” on page 15.
Part 3
Appendices
APPENDIX A Troubleshooting

Some or all of my MOTU interface inputs and outputs are not available in my host audio software.

Make sure that the inputs and outputs are enabled in the Device tab ("Device tab" on page 18) and routed to and from the computer in the Routing tab ("Routing tab" on page 20). For details, see “Making inputs and outputs available to your host software” on page 66.

I have absolutely no audio input or output happening to or from my interface. Why?

Make sure that the unit has a stable sample rate (the sample rate will flash if the clock hasn’t settled yet). Try setting the unit’s clock source to Internal if you can’t sync to any external clock sources. Check that audio is working with Internal sync, and if so, then work on establishing a stable external clock.

I can’t hear computer audio output through my MOTU AVB interface.

In the Sound panel of System Preferences, your MOTU AVB interface should be selected as the output device. Almost all applications will use just the first two output channels, so make sure that From Computer 1 and From Computer 2 are routed to the physical outputs that you are listening to in the Routing tab (e.g. Phones 1-2 or Analog 1-2).

How do I monitor live inputs?

Please refer to the documentation for the audio application that you are using. If your application does not support input monitoring, you will need to use the mixer in your MOTU interface. Please see “Monitoring through your MOTU interface” on page 69.

How do I control monitoring latency?

See “Reducing monitoring latency” on page 69.

The Routing tab (page 20) doesn’t display some of the inputs or outputs on my interface.

The Routing tab only displays input and output banks that are enabled in the Device tab (page 18), so be sure any banks you wish to work with are enabled there. However, to conserve DSP resources and help consolidate screen-space in the other tabs, it is efficient practice to disable unused input or output banks (optical banks, for example, when only working with analog banks, or all output banks when only working with Phones).

I’m getting a “Could not enable this effect because DSP is overloaded” error. What should I do?

Disable other effects or reduce the number of mixer inputs to conserve DSP resources. If there are audio input and output banks on your interface that you are not using (such as the optical banks), disable them in the Device tab (page 18).

I accidentally deleted my factory presets. How do I restore them?

In the Device tab (page 18), click the Restore Factory Presets button to restore all factory presets.

How do I factory reset my device?

Push the SELECT knob/button to enter the main menu. Navigate to Settings > Factory Default and push the SELECT knob/button twice to reset.

I can’t authenticate AudioDesk.

When authenticating AudioDesk, the OK button does not become active until you have entered in your name and a valid keycode. Your name must contain at least three characters, and you must enter the keycode exactly as it appears (on the jacket of your AudioDesk installer disc). If you continue to have difficulties, try repairing Mac OS X disk permissions using Disk Utility.
I hear clicks and pops under word clock sync.
Many problems result from incorrect word clocking. It is essential that all digital devices in the system be word locked. Consult “Synchronization” on page 51 for detailed information on how to word clock your gear. Whenever there is any unexpected noise or distortion, suspect incorrect word lock.

Clicks and pops due to hard drive problems...
If you have checked your clock settings and you are still getting clicks and pops in your audio, you may have a drive related problem. Set your Clock Source to Internal and try recording just using the analog inputs and outputs on your MOTU interface. If you encounter the same artifacts you may want try using another drive in your computer. Clicks and pops can also occur when the drive is severely fragmented or there are other drive-related issues.

Connecting or powering gear during operation...
It is not recommended that you connect/disconnect, or power on/off devices connected to your MOTU interface while recording or playing back audio. Doing so may cause a brief glitch in the audio.

CUSTOMER SUPPORT
We are happy to provide complimentary customer support to our registered users. If you haven’t already done so, please take a moment to register online at MOTU.com, or fill out and mail the included registration card. Doing so entitles you to technical support and notices about new products and software updates.

TECHNICAL SUPPORT
If you are unable, with your dealer's help, to solve problems you encounter with your MOTU device, you may contact our technical support department in one of the following ways:

- Tech support hotline: (617) 576-3066 (Monday through Friday, 9 a.m. to 6 p.m. EST)
- Online support: www.motu.com/support

Please provide the following information to help us solve your problem as quickly as possible:

- The serial number of your MOTU device. This is printed on a label placed on the bottom of the rack unit. You must be able to supply this number to receive technical support.
- A brief explanation of the problem, including the exact sequence of actions which cause it, and the contents of any error messages which appear on the screen.
- The pages in the manual that refer to the features or operation of your MOTU AVB Device or AudioDesk with which you are having trouble.
- The version of your computer’s operating system.

We’re not able to solve every problem immediately, but a quick call to us may yield a suggestion for a problem which you might otherwise spend hours trying to track down.

If you have features or ideas you would like to see implemented, we’d like to hear from you. Please write to the Development Team, MOTU Inc., 1280 Massachusetts Avenue, Cambridge, MA 02138, or use our online suggestion box at www.motu.com/suggestions.
Audio Specifications

1248

Line Out

<table>
<thead>
<tr>
<th></th>
<th>Line Out</th>
<th>Balanced, tip hot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Type</td>
<td>1/4" Female, TRS</td>
<td></td>
</tr>
<tr>
<td>Output Impedance</td>
<td>100 ohm</td>
<td>Per leg</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>123 dB</td>
<td>A-weighted</td>
</tr>
<tr>
<td>THD+N</td>
<td>-110 dB (0.0003%)</td>
<td>-1 dBFS, Unweighted, 1 kHz</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>+0, -0.1 dB, 20 Hz/20 kHz</td>
<td>Ref. 1 kHz</td>
</tr>
<tr>
<td>Max Level Out</td>
<td>+20 dBu</td>
<td></td>
</tr>
<tr>
<td>Trim Range</td>
<td>24 dB</td>
<td>-4 dBu to +20 dBu in 1 dB steps</td>
</tr>
</tbody>
</table>

Guitar In

<table>
<thead>
<tr>
<th></th>
<th>Guitar In</th>
<th>Unbalanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Type</td>
<td>1/4" Female, TS</td>
<td></td>
</tr>
<tr>
<td>Impedance</td>
<td>1 megohm</td>
<td></td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>103 dB</td>
<td>A-weighted</td>
</tr>
<tr>
<td>THD+N</td>
<td>-93 dB</td>
<td>-1 dBFS, Unweighted</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>+0.05, -0.1 dB</td>
<td>Ref. 1 kHz</td>
</tr>
<tr>
<td>Max Level In</td>
<td>-2 dBu with trim down, +10 dBu with trim up</td>
<td>0.615v to 2.45v</td>
</tr>
<tr>
<td>Trim Range</td>
<td>12dB</td>
<td>-2 dBu to +10 dBu in 1 dB steps</td>
</tr>
</tbody>
</table>

Line In

<table>
<thead>
<tr>
<th></th>
<th>Line In</th>
<th>Balanced/unbalanced, Tip hot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Type</td>
<td>1/4" Female, TRS</td>
<td></td>
</tr>
<tr>
<td>Specification</td>
<td>Complies with EBU-R68 / SMPTE RP-155</td>
<td></td>
</tr>
<tr>
<td>Impedance Load</td>
<td>10 k ohm</td>
<td></td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>117 dB</td>
<td>A-weighted</td>
</tr>
<tr>
<td>THD+N</td>
<td>-110 dB (0.0003%)</td>
<td>-1 dBFS, Unweighted</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>+0, -0.1 dB, 20 Hz/20 kHz</td>
<td>Ref. 1 kHz</td>
</tr>
<tr>
<td>Max Level In</td>
<td>+24 dBu</td>
<td></td>
</tr>
<tr>
<td>Trim Range</td>
<td>22 dB</td>
<td>+2 dBu to +24 dBu in 1 dB steps</td>
</tr>
</tbody>
</table>

MIC In

<table>
<thead>
<tr>
<th></th>
<th>MIC In</th>
<th>Pin 2 hot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Type</td>
<td>XLR Male, Balanced</td>
<td></td>
</tr>
<tr>
<td>Impedance Load</td>
<td>3k ohm, 4.5k with Pad</td>
<td></td>
</tr>
<tr>
<td>Pad</td>
<td>-20 dB, Switchable per channel</td>
<td></td>
</tr>
<tr>
<td>Phantom Power</td>
<td>+48v, Switchable per channel</td>
<td>DIN 45596 / IEC 61938-P48</td>
</tr>
<tr>
<td>EIN</td>
<td>-128 dBu, 20 – 20 kHz</td>
<td>Rs = 150 ohm</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>117 dB</td>
<td>A-weighted</td>
</tr>
<tr>
<td>THD+N</td>
<td>-110 dB (0.0003%)</td>
<td>-1 dBFS, Unweighted, 1 kHz</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>+0, -0.1 dB, 20 Hz/20 kHz</td>
<td>Ref. 1 kHz</td>
</tr>
<tr>
<td>Max Level In</td>
<td>+24 dBu</td>
<td>With pad</td>
</tr>
<tr>
<td>Trim Range</td>
<td>63 dB</td>
<td>0 to +63 dB in 1dB steps</td>
</tr>
</tbody>
</table>
S/PDIF

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Type</td>
<td>RCA</td>
</tr>
<tr>
<td>Termination</td>
<td>75 ohm I/O</td>
</tr>
<tr>
<td>Lock Range</td>
<td>44.1k/48k, +/- 0.5%</td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>0.2 Vpp/1Vpp</td>
</tr>
<tr>
<td>Output Drive</td>
<td>0.5 Vpp With termination</td>
</tr>
<tr>
<td>THD+N In (SRC)</td>
<td>-122 dB</td>
</tr>
<tr>
<td>Specification</td>
<td>IEC-958/60968-3</td>
</tr>
</tbody>
</table>

Phones

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Type</td>
<td>1/4” Female, TRS Stereo</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>108 dB</td>
</tr>
<tr>
<td>THD+N</td>
<td>-100 dB</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>+0 -0.15 dB, 22 Hz/20 kHz</td>
</tr>
<tr>
<td>Drive</td>
<td>Max. 80 mw</td>
</tr>
<tr>
<td>Trim Range</td>
<td>128 dB</td>
</tr>
</tbody>
</table>

Word Clock In/Out/Thru

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Type</td>
<td>BNC</td>
</tr>
<tr>
<td>Termination</td>
<td>75 ohm (in/out)</td>
</tr>
<tr>
<td>Lock Range</td>
<td>44.1 kHz / 48kHz, +/- 0.5%</td>
</tr>
<tr>
<td>Input</td>
<td>1 vpp to 3 v p-p (with termination)</td>
</tr>
<tr>
<td>Output</td>
<td>5.0 vpp, (2.5 v p-p terminated)</td>
</tr>
<tr>
<td>Jitter</td>
<td>complies with AES3-4-2009</td>
</tr>
</tbody>
</table>

Power Supply

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Type</td>
<td>IEC 3-conductor receptacle</td>
</tr>
<tr>
<td>Configuration</td>
<td>Internal, Universal</td>
</tr>
<tr>
<td>Power Input</td>
<td>100 V to 240 V, 50 Hz or 60 Hz</td>
</tr>
<tr>
<td>Power Usage</td>
<td>35 watts</td>
</tr>
</tbody>
</table>
8M

Line Out

<table>
<thead>
<tr>
<th>Connector Type</th>
<th>1/4" Female, TRS</th>
<th>Balanced, Tip hot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Impedance</td>
<td>100 ohm</td>
<td>Per leg</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>123 dB</td>
<td>A-weighted</td>
</tr>
<tr>
<td>THD+N</td>
<td>-110 dB (0.0003%)</td>
<td>-1 dBFS, Unweighted, 1 kHz</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>+0 -0.1 dB, 20 Hz/20 kHz</td>
<td>Ref. 1 kHz</td>
</tr>
<tr>
<td>Max Level Out</td>
<td>+20 dBu</td>
<td></td>
</tr>
<tr>
<td>Trim Range</td>
<td>24 dB in 1 dB steps</td>
<td>-4 dBu to +20 dBu</td>
</tr>
</tbody>
</table>

MIC in

<table>
<thead>
<tr>
<th>Connector Type</th>
<th>Combo-style, XLR / TRS</th>
<th>Pin 2 hot, tip hot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance Load</td>
<td>3 k ohm, 4.5 k with Pad</td>
<td></td>
</tr>
<tr>
<td>Pad</td>
<td>-20 dB, Switchable per channel</td>
<td></td>
</tr>
<tr>
<td>Phantom power</td>
<td>+48 V, switchable per channel</td>
<td>DIN 45596 / IEC 61938-P48</td>
</tr>
<tr>
<td>EIN</td>
<td>-128 dBu</td>
<td>XLR Terminated</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>112 dB</td>
<td>A-weighted</td>
</tr>
<tr>
<td>THD+N</td>
<td>-104 dB</td>
<td>Unweighted</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>+0 -0.1 dB, 20 Hz/20 kHz</td>
<td>Ref. 1 kHz</td>
</tr>
<tr>
<td>Max Level In with Pad</td>
<td>+24 dBu</td>
<td>V-Limit starts at 17 dBu</td>
</tr>
<tr>
<td>Max Level In without Pad</td>
<td>+5 dBu</td>
<td>V-Limit starts at 4 dBu</td>
</tr>
<tr>
<td>Trim range</td>
<td>0 to +53 dB in 1 dB steps</td>
<td></td>
</tr>
</tbody>
</table>

TRS

<table>
<thead>
<tr>
<th>Description</th>
<th>Balanced or single ended</th>
<th>Suitable for line or instrument (guitar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance Load</td>
<td>1 meg ohm</td>
<td>differential</td>
</tr>
<tr>
<td>Pad</td>
<td>-20 dB, Switchable per channel</td>
<td></td>
</tr>
<tr>
<td>Phantom power</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>112 dB</td>
<td>A-weighted</td>
</tr>
<tr>
<td>THD+N</td>
<td>-102 dB</td>
<td>-1 dBFS, Unweighted</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>+0 -0.1 dB, 20 Hz/20 kHz</td>
<td>Ref. 1 kHz</td>
</tr>
<tr>
<td>Max Level in with Pad</td>
<td>+17 dBu</td>
<td>V-Limit starts at +7 dBu</td>
</tr>
<tr>
<td>Max Level in without Pad</td>
<td>+5 dBu</td>
<td>V-Limit starts at -3 dBu</td>
</tr>
<tr>
<td>Trim range</td>
<td>0 to +53 dB in 1 dB steps</td>
<td></td>
</tr>
<tr>
<td>V-Limit Compressor Range</td>
<td>9 dB</td>
<td></td>
</tr>
</tbody>
</table>

Phones

<table>
<thead>
<tr>
<th>Connector Type</th>
<th>1/4" Female, TRS Stereo</th>
<th>Tip Left, Ring Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Range</td>
<td>102 dB</td>
<td>A-Weighted</td>
</tr>
<tr>
<td>THD+N</td>
<td>-92 dB</td>
<td>Unweighted</td>
</tr>
<tr>
<td>Drive</td>
<td>Max. 80 mW</td>
<td>16/32/55 ohms</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>+0 -0.27 dB, 20 Hz/20 kHz</td>
<td>Ref. 1 kHz</td>
</tr>
<tr>
<td>Trim Range</td>
<td>-128 dB (muted) to 0, in 1 dB steps</td>
<td></td>
</tr>
</tbody>
</table>
Word Clock In/Out/Thru

<table>
<thead>
<tr>
<th>Specification</th>
<th>AES-11 2009 Annex B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jack Type</td>
<td>BNC</td>
</tr>
<tr>
<td>Termination</td>
<td>75 ohm (in/out)</td>
</tr>
<tr>
<td>Lock Range</td>
<td>44.1 kHz / 48 kHz, ±0.5%</td>
</tr>
<tr>
<td>Input</td>
<td>1 vpp to 3 v p-p (with termination)</td>
</tr>
<tr>
<td>Output</td>
<td>5.0 vpp, (2.5 v p-p terminated)</td>
</tr>
<tr>
<td>Jitter</td>
<td>Complies with AES3-4-2009</td>
</tr>
</tbody>
</table>

Power Supply

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Internal, universal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Input</td>
<td>100 V to 240 V, 50 Hz or 60 Hz</td>
</tr>
<tr>
<td>Connector Type</td>
<td>IEC 3-conductor receptacle</td>
</tr>
<tr>
<td>Power Usage</td>
<td>35 watts</td>
</tr>
</tbody>
</table>
16A

Line Out

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Type</td>
<td>1/4" Female, TRS Balanced, Tip hot</td>
</tr>
<tr>
<td>Output Impedance</td>
<td>100 ohm Per leg</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>123 dB A-weighted</td>
</tr>
<tr>
<td>THD+N</td>
<td>-110 dB (0.0003%) -1 dBFS, Unweighted, 1 kHz</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>+0 -0.1 dB, 20 Hz/20 kHz Ref. 1 kHz</td>
</tr>
<tr>
<td>Max Level Out</td>
<td>+20 dBu</td>
</tr>
<tr>
<td>Trim Range</td>
<td>16 dB in 1 dB steps +4 dBu to +20 dBu</td>
</tr>
</tbody>
</table>

Line In

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification</td>
<td>Complies with EBU-R68 / SMPTE RP-155</td>
</tr>
<tr>
<td>Connector Type</td>
<td>1/4" Female, TRS Balanced/Unbalanced, Tip hot</td>
</tr>
<tr>
<td>Impedance Load</td>
<td>10 k ohm</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>117 dB A-weighted</td>
</tr>
<tr>
<td>THD+N</td>
<td>-110 dB (0.0003%) -1 dBFS, Unweighted, 1 kHz</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>+0 -0.1 dB, 20 Hz/20 kHz Ref. 1 kHz</td>
</tr>
<tr>
<td>Max Level In</td>
<td>+24 dBu</td>
</tr>
<tr>
<td>Trim Range</td>
<td>22 dB (+2 dBu to +24 dBu) in 1 dB steps Compatible with EBU-R68, SMPTE RP-155, +4, -10, 2vRMS, 1vRMS</td>
</tr>
</tbody>
</table>

Word Clock In/Out/Thru

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification</td>
<td>Complies with AES-11 2009 Annex B</td>
</tr>
<tr>
<td>Jack Type</td>
<td>BNC</td>
</tr>
<tr>
<td>Termination</td>
<td>75 ohm (in/out) THRU is unterminated</td>
</tr>
<tr>
<td>Lock Range</td>
<td>44.1 kHz / 48 kHz, + - 0.5% x1/x2/x4</td>
</tr>
<tr>
<td>Input</td>
<td>1 vpp to 3 v p-p (with termination) AC coupled</td>
</tr>
<tr>
<td>Output</td>
<td>5.0 vpp, (2.5 v p-p terminated) DC coupled</td>
</tr>
<tr>
<td>Jitter</td>
<td>complies with AES3-4-2009 < 0.025UI</td>
</tr>
</tbody>
</table>

Power supply

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>Internal, universal</td>
</tr>
<tr>
<td>Power input</td>
<td>100 V to 240 V, 50 Hz or 60 Hz</td>
</tr>
<tr>
<td>Connector Type</td>
<td>IEC 3-conductor receptacle For AC mains connection</td>
</tr>
<tr>
<td>Power usage</td>
<td>35 watts</td>
</tr>
</tbody>
</table>
MONO INPUT CHANNEL

- HPF
- GATE
- EQ
- COMP

- POST FX
- PAN
- SOLO BUS
- MUTE

- FADER

- PRE
- POST

- SEND
- PAN
- MAIN MIX

- SEND
- PAN
- GROUP REVERB STEREO AUX

- SEND
- MONO AUX
STEREO INPUT CHANNEL

APPENDIX C: MIXER SCHEMATICS
MOTU periodically posts firmware updates for your MOTU AVB interface. These updates may include bug fixes, enhancements, and new features.

Updates are posted on MOTU's servers. If your computer or Wi-Fi device has access to the internet, the MOTU AVB Control app notifies you as soon as an update is made available. Otherwise, you can check motu.com/avb periodically for the latest firmware update.

A network cable connection is required
Firmware updating requires a network cable connection, so before you begin, connect a standard CAT-5 or CAT-6 network cable from the network port on your MOTU interface to one of the following:

- Your computer's network port (or a Thunderbolt-to-Ethernet adapter)
- Your home, studio, or office network (with internet access)
- An AVB port on a MOTU AVB switch (connected to your office network through the Ethernet port)

Updating with internet access
You are now ready to update:

1. Launch the MOTU AVB Control web app on your computer, iPad, or iPhone, as usual.
2. Go to the Device tab.
3. In the New Update Available banner (Figure D-1), click More Info.
4. After reviewing the list of enhancements, click OK to start the update.
5. Wait a few moments for the update to finish, then click OK to return to the Device tab.
6. IMPORTANT: disconnect the Ethernet cable from your MOTU interface after you complete the update, unless it is connected to a MOTU AVB switch or other AVB-aware switch. If so, you can leave it connected.

Figure D-1: The firmware update banner appears automatically at the top of the Device tab when your web host has internet access and MOTU posts an update.
Updating off-line, without internet access
If your MOTU A VB interface (and the computer it is connected to) has no internet access, you can download a firmware update file from another computer that does have internet, and then use the file to update your MOTU interface, as follows:

1. Download the firmware file.
2. Transfer the file to a computer with a network cable connection to your MOTU interface.
3. Launch the MOTU A VB Control web app on the computer, as usual.
4. Go to the Device tab.
5. Scroll down to the bottom and click *Update from File*.
6. Locate the file on your hard drive and click OK to start the update.
7. Wait a few moments for the update to finish, then click OK to return to the Device tab.

8. IMPORTANT: disconnect the Ethernet cable from your MOTU interface after you complete the update, unless it's connected to a MOTU A VB switch or other AVB-aware switch. If so, you can leave it connected.

Viewing the latest firmware version information
You can confirm the firmware version at the bottom of the Device tab (Figure D-2).

Why does the firmware update require a network cable?
Firmware updating was designed to use ethernet mostly for convenience. If you have lots of networked devices, you can upgrade them all from a distance (even over Wi-Fi) without having to plug in directly and without having to download or run an updater application.

This approach was also taken for engineering reasons, with reliability foremost in mind. When installing an update, the device reboots into a stripped-down recovery partition to guarantee that the update process can always be completed, even if the power goes out mid-update. Since updates can also affect the Thunderbolt or USB chips, they cannot be used during the update.

Figure D-2: The currently installed firmware version is displayed at the bottom of the Device tab.
APPENDIX E OSC Support

Open Sound Control (OSC) is a protocol for communication among computers and other multimedia devices that is optimized for modern networking technology.

MOTU AVB audio interfaces support OSC, which provides remote control of all device settings and mixer controls from any OSC-enabled controller.

For further details about remote control through OSC, along with complete documentation for the MOTU AVB OSC API, visit:

http://www.motu.com/avb#avb-osc-support
+4dB analog input 45
-10dB analog input 45
1248
expansion 39
front panel 9
installing 37
rear panel 10
summary of features 27
16A
expansion 39
front panel 13
installing 37
rear panel 14
summary of features 27
24-bit
optical 10, 12, 14
2x SMUX mode 19, 46
8M
expansion 39
front panel 11
installing 37
rear panel 12
Soft Clip 45
summary of features 27
V-Limit 45, 61
A
Ableton Live 65, 69
ADAT optical 10, 12, 14
connecting 46
SMUX Type 63
Analog inputs/outputs 10, 12, 14, 46
making connections to 45
Apple
Garage Band 69
Logic Pro 69
ASIO Buffer Size 34
ASIO monitoring 69
Attack
Compressor 74, 75
Audio interface preset 7, 57
Audio specifications 89
AudioDesk 30, 35, 65, 69
authenticating 87
Aux Mix Target 22
Aux Mixing tab 22
AVB
audio interface operation 28
Discovery app 7, 34
Ethernet explained 79
Input/Output Banks 19
networking 79-83
overview 79
Stream Connections 19
Stream Setup 19
streams (Routing tab) 20
Switch
setup 40, 44
AVB Control web app 7, 17-26
Aux Mixing tab 22
Device tab 18, 19
Mixing tab 21
Routing tab 20
AVB Switch 15
Avid
Pro Tools 69
B
Balanced analog 45
Become Clock Master 18, 53
C
CAT-5e/6 cables 15, 39
Check for Updates 19
Chrome 17
Class compliance 33
Clock section (LCD) 9, 63
Clock source 18, 51
Coax 29
Cockos Reaper 69
Compressor effect 21, 75
Computer Setup 19
Computer Volume Controls setting 45
Connecting multiple interfaces 39
Control Panel 34, 71
Control surface support (through OSC) 101
Converter mode
setup/example 60
Core Audio driver 68
Cubase 65, 69
clock source 65
sample rate 65
Customer
support 88
D
DAT
connecting 48, 49, 50
Device tab 18, 19
Digital converter (see Optical converter)
Digital Performer 65, 69
Direct hardware playthrough 69
Direct ASIO monitoring 69
Direct hardware playthrough 69
Driver installation 7, 17, 33
Drivers
installing USB drivers 34
DSP
effects 73
meter 78
resources 78
DSP Usage 23, 78
Dynamic mic 45
E
Effects 73
EQ 74
enabling 74
filter types 74
frequency 74
gain 74
Q 74
Ethernet
connecting 44
Ethernet cables 15
Expansion 39
F
Firefox 17
Firmware updates 18
Follow Solo 21, 24
Four-band EQ 74
Frequency
EQ 74
From Computer 20
Front panel 61
menu navigation 62
metering 61
G
Gain
EQ 74
reduction 75
reduction (Leveler) 77
Garage Band 65, 69
GarageBand
clock source 65
sample rate 65
Gate effect 21, 74
GR (gain reduction) 75
Guitar
connecting 45
Guitar inputs 9, 45
Guitar/mic inputs
connecting 48, 49, 50
H
Headphone outputs 9
Headphones
connecting 48, 49, 50
High pass filter 73
Host audio software
3rd party software sync 72
I
ID knob/button 17, 18, 62
IEEE 802.1 79
Input banks 19
Input settings 18
Inputs
analog 10, 12, 14
optical 10, 12, 14
S/PDIF (BNC) 10
Installation
AVB audio interface 38
hardware 37
network 40, 41
QuickStart Guide 7
software 34
Thunderbolt interface 38
two interfaces networked 39
USB interface 37
Interface + mixer preset 7, 58
Internet Explorer 17
IP address 17
iPad
QuickStart 7
T
Technical support 88
Threshold
Compressor 75
Thru (word clock) 53
To Computer 20
TOSLink 10, 12, 14, 29, 46
Trim 45
Troubleshooting 87
TRS analog inputs/outputs 46
TRS connectors 45
Type I, II optical mode 63
Type II (Legacy) optical setting 46

U
Unbalanced analog 45
Update From File 19
USB
 class compliance 33
 installing drivers 34
USB Streaming Mode 34

V
View Personal Mix 22
V-Limit 45, 61
 Lookahead 61

W
Wave driver 68
Width
 reverb 78
WiFi
 setup 44
Windows
 driver installation 33
 shortcut 34
 system requirements 31
Word clock 10, 12, 52
 Thru 53