SAFETY PRECAUTIONS AND ELECTRICAL REQUIREMENTS

CAUTION! READ THIS SAFETY GUIDE BEFORE YOU BEGIN INSTALLATION OR OPERATION. FAILURE TO COMPLY WITH SAFETY INSTRUCTIONS COULD RESULT IN BODILY INJURY OR EQUIPMENT DAMAGE.

WARNING: HAZARDOUS VOLATILES: CONTACT MAY CAUSE ELECTRIC SHOCK OR BURN. TURN OFF UNIT BEFORE SERVICING.

CAUTION: TO REDUCE THE RISK OF ELECTRICAL SHOCK, DO NOT REMOVE COVER. NO USER-SERVICEABLE PARTS INSIDE. REFER SERVICING TO QUALIFIED SERVICE PERSONNEL.

WARNING: DO NOT PERMIT FINGERS TO TOUCH THE TERMINALS OF PLUGS WHEN INSTALLING OR REMOVING THE PLUG TO OR FROM THE OUTLET.

WARNING: IF NOT PROPERLY GROUNDED THE MOTU V4HD COULD CAUSE AN ELECTRICAL SHOCK.

The MOTU V4HD is equipped with a three-conductor cord and grounding type plug which has a grounding prong, approved by Underwriters' Laboratories and the Canadian Standards Association. This plug requires a mating three-conductor grounded type outlet as shown in Figure A below. If the outlet you are planning to use for the MOTU V4HD is of the two prong type, DO NOT REMOVE OR ALTER THE GROUNDING PRONG IN ANY MANNER. Use an adapter as shown below and always connect the grounding lug to a known ground. It is recommended that you have a qualified electrician replace the TWO prong outlet with a properly grounded THREE prong outlet. An adapter as illustrated below in Figure B is available for connecting plugs to two-prong receptacles.

Figure A

![Three-prong plug and grounding lug](image1.png)

Figure B

![Adapter and two-prong receptacle](image2.png)

WARNING: THE GREEN GROUNDING LUG EXTENDING FROM THE ADAPTER MUST BE CONNECTED TO A PERMANENT GROUND SUCH AS TO A PROPERLY GROUNDED OUTLET BOX. NOT ALL OUTLET BOXES ARE PROPERLY GROUNDED.

If you are not sure that your outlet box is properly grounded, have it checked by a qualified electrician. NOTE: The adapter illustrated is for use only if you already have a properly grounded two-prong receptacle. Adapter is not allowed in Canada by the Canadian Electrical Code. Use only three wire extension cords which have three-prong grounding type plugs and three-prong receptacles which will accept the MOTU V4HD plug.

IMPORTANT SAFEGUARDS

1. Read these instructions. All the safety and operating instructions should be read before operating the V4HD.
2. Keep these instructions. These safety instructions and the V4HD owner's manual should be retained for future reference.
3. Heed all warnings. All warnings on the V4HD and in the owner's manual should be adhered to.
4. Follow all instructions. All operating and use instructions should be followed.
5. Do not use the V4HD near water.
6. Cleaning - Unplug the V4HD from the computer and clean only with a dry cloth. Do not use liquid or aerosol cleaners.
7. Ventilation - Do not block any ventilation openings. Install in accordance with the manufacturer's instructions.
8. Heat - Do not install the V4HD near any heat sources such as radiators, heat registers, stoves, or other apparatus (including an amplifier) that produces heat.
9. Overloading - Do not overload wall outlets and extension cords as this can result in a risk of fire or electrical shock.
10. Grounding - Do not defeat the safety purpose of the polarized or grounding-type plug. A polarized plug has two blades with one wider than the other. A grounding-type plug has two blades and a third grounding prong. The wide blade or the third prong are provided for your safety. If the provided plug does not fit into your outlet, consult and electrician for replacement of the obsolete outlet.
11. Power plug - Protect the V4HD power cord from being walked on or pinched by items placed upon or against them. Pay particular attention to cords and plugs, convenience receptacles, and the point where they exit from the V4HD.
12. Power switch - Install the V4HD so that the power switch can be accessed and operated at all times.
13. Power cord - Protect the V4HD power cord from being walked on or pinched by items placed upon or against them. Pay particular attention to cords and plugs, convenience receptacles, and the point where they exit from the V4HD.
14. Grounding - Do not defeat the safety purpose of the polarized or grounding-type plug. A polarized plug has two blades with one wider than the other. A grounding-type plug has two blades and a third grounding prong. The wide blade or the third prong are provided for your safety. If the provided plug does not fit into your outlet, consult and electrician for replacement of the obsolete outlet.
15. Power plug - Protect the V4HD power cord from being walked on or pinched by items placed upon or against them. Pay particular attention to cords and plugs, convenience receptacles, and the point where they exit from the V4HD.
16. Power switch - Install the V4HD so that the power switch can be accessed and operated at all times.
17. Power cord - Protect the V4HD power cord from being walked on or pinched by items placed upon or against them. Pay particular attention to cords and plugs, convenience receptacles, and the point where they exit from the V4HD.
18. Power sources - Refer to the manufacturer's operating instructions for power requirements. Be advised that different operating voltages may require the use of a different line cord and/or attachment plug.
19. Installation - Do not install the V4HD in an unventilated rack, or directly above heat-producing equipment such as power amplifiers. Observe the maximum ambient operating temperature listed below.
20. Power amplifiers - Never attach audio power amplifier outputs directly to any of the unit's connectors.
21. Replacement Parts - When replacement parts are required, be sure the service technician has used replacement parts specified by the manufacturer or have the same characteristics as the original part. Unauthorized substitutions may result in fire, electric shock or other hazards.
22. Safety Check - Upon completion of any service or repairs to this MOTU V4HD, ask the service technician to perform safety checks to determine that the product is in safe operating conditions.

ENVIRONMENT

Operating Temperature: 10°C to 40°C (50°F to 104°F)

TO REDUCE THE RISK OF ELECTRICAL SHOCK OR FIRE

Do not handle the power cord with wet hands. Do not pull on the power cord when disconnecting it from an AC wall outlet. Grasp it by the plug. Do not expose this apparatus to rain or moisture. Do not place objects containing liquids on it.

AC INPUT

100 - 240VAC • 50 / 60Hz • 45 Watts.
Contents

Part 1: Getting Started

7 Quick Reference: V4HD Front Panel
8 Quick Reference: V4HD Rear Panel
9 Quick Reference: MOTU Video Console
11 Quick Reference: MOTU Audio Console
13 About the V4HD
17 Packing List and Windows System Requirements
19 IMPORTANT! Run the V4HD Software Installer First
21 Installing the V4HD Hardware

Part 2: Video Operation

37 V4HD Basics
41 MOTU Video Console
57 Premiere Pro

Part 3: Audio Operation

69 MOTU Audio Console
77 CueMix FX
85 MOTU SMPTE Console

Part 4: Standalone Operation

91 Standalone Operation
93 Front Panel LCD Programming

Part 5: Appendices

103 Troubleshooting
105 Video Formats
107 V4HD Specifications
109 DB25 to XLR Pin Outs
111 Index
About the Mark of the Unicorn License Agreement and Limited Warranty on Software
TO PERSONS WHO PURCHASE OR USE THIS PRODUCT: carefully read all the terms and conditions of the “click-wrap” license agreement presented to you when you install the software. Using the software or this documentation indicates your acceptance of the terms and conditions of that license agreement.

Mark of the Unicorn, Inc. (“MOTU”) owns both this program and its documentation. Both the program and the documentation are protected under applicable copyright, trademark, and trade-secret laws. Your right to use the program and the documentation are limited to the terms and conditions described in the license agreement.

Reminder of the terms of your license
This summary is not your license agreement, just a reminder of its terms. The actual license can be read and printed by running the installation program for the software. That license agreement is a contract, and clicking “Accept” binds you and MOTU to all its terms and conditions. In the event anything contained in this summary is incomplete or in conflict with the actual click-wrap license agreement, the terms of the click-wrap agreement prevail.

YOU MAY: (a) use the enclosed program on a single computer; (b) physically transfer the program from one computer to another provided that the program is used on only one computer at a time and that you remove any copies of the program from the computer from which the program is being transferred; (c) make copies of the program solely for backup purposes. You must reproduce and include the copyright notice on a label on any backup copy.

YOU MAY NOT: (a) distribute copies of the program or the documentation to others; (b) rent, lease or grant sublicenses or other rights to the program; (c) provide use of the program in a computer service business, network, time-sharing, multiple CPU or multiple user arrangement without the prior written consent of MOTU; (d) translate, adapt, reverse engineer, decompile, disassemble, or otherwise alter the program or related documentation without the prior written consent of MOTU.

MOTU warrants to the original licensee that the disk(s) on which the program is recorded be free from defects in materials and workmanship under normal use for a period of ninety (90) days from the date of purchase as evidenced by a copy of your receipt. If failure of the disk has resulted from accident, abuse, misuse, or misapplication of the product, then MOTU shall have no responsibility to replace the disk(s) under this Limited Warranty.

THIS LIMITED WARRANTY AND RIGHT OF REPLACEMENT IS IN LIEU OF, AND YOU HEREBY WAIVE, ANY AND ALL OTHER WARRANTIES, BOTH EXPRESS AND IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE LIABILITY OF MOTU PURSUANT TO THIS LIMITED WARRANTY SHALL BE LIMITED TO THE REPLACEMENT OF THE DEFECTIVE DISK(S), AND IN NO EVENT SHALL MOTU OR ITS SUPPLIERS, LICENSORS, OR AFFILIATES BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING BUT NOT LIMITED TO LOSS OF USE, LOSS OF PROFITS, LOSS OF DATA OR DATA BEING RENDERED INACCURATE, OR LOSSES SUSTAINED BY THIRD PARTIES EVEN IF MOTU HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, WHICH MAY VARY FROM STATE TO STATE. SOME STATES DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

Update Policy
In order to be eligible to obtain updates of the program, you must complete and return the attached Mark of the Unicorn Purchaser Registration Card to MOTU.

Copyright Notice
Copyright © 2008, 2007 by Mark of the Unicorn, Inc. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any human or computer language, in any form or by any means whatsoever, without express written permission of Mark of the Unicorn, Inc., 1280 Massachusetts Avenue, Cambridge, MA 02138, U.S.A.

Limited Warranty on Hardware
Mark of the Unicorn, Inc. and S&S Research (“MOTU/S&S”) warrant this equipment against defects in materials and workmanship for a period of TWO (2) YEARS from the date of original retail purchase. This warranty applies only to hardware products; MOTU software is licensed and warranted pursuant to separate written statements.

If you discover a defect, first write or call Mark of the Unicorn at (617) 576-2760 to obtain a Return Merchandise Authorization Number. No service will be performed on any product returned without prior authorization. MOTU will, at its option, repair or replace the product at no charge to you, provided you return it during the warranty period, with transportation charges prepaid, to Mark of the Unicorn, Inc., 1280 Massachusetts Avenue, MA 02138. You must use the product’s original packing material for shipment, and insure the shipment for the value of the product. Please include your name, address, telephone number, a description of the problem, and the original, dated bill of sale with the returned unit and print the Return Merchandise Authorization Number on the outside of the box below the shipping address.

This warranty does not apply if the equipment has been damaged by accident, abuse, misuse, or misapplication; has been modified without the written permission of MOTU; or if the product serial number has been removed or defaced.

ALL IMPLIED WARRANTIES, INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO TWO (2) YEARS FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF THIS PRODUCT.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. NO MOTU/S&S dealer, agent, or employee is authorized to make any modification, extension, or addition to this warranty.

MOTU/S&S ARE NOT RESPONSIBLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY BREACH OF WARRANTY OR UNDER ANY LEGAL THEORY, INCLUDING LOST PROFITS, DOWNTIME, GOODWILL, DAMAGE OR REPLACEMENT OF EQUIPMENT AND PROPERTY AND COST OF REPROGRAMMING, OR REPRODUCING ANY PROGRAM OR DATA STORED IN OR USED WITH MOTU/S&S PRODUCTS.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the above exclusion or limitation may not apply to you. This warranty gives you specific legal rights, and you may have other rights which vary from state to state.

MOTU, Mark of the Unicorn and the unicorn silhouette logo are trademarks of Mark of the Unicorn, Inc. All other trademarks are the property of their respective owners.
Part 1

Getting Started
Quick Reference: V4HD Front Panel

1. These 10-segment level meters are dedicated to the V4HD's eight analog audio inputs. The top red 'over' LED illuminates when the signal reaches full scale—for even just one channel. The second red LED below the over LED will illuminate momentarily only when a channel goes into clipping. All the LEDs below indicate the level of the corresponding channel.

2. The light that is illuminated here tells you which of the V4HD's eight 8-channel audio banks (analog, AES/EBU, optical or embedded) you are monitoring with the programmable meter bank to the right. You can monitor input or output for any bank. Use the LCD or software to choose the desired bank.

3. This bank of level meters can be programmed (via the LCD or software) to display one of four different banks: analog, AES/EBU, optical or embedded. The LEDs to the left show which bank you are currently monitoring.

4. Internally, the V4HD is divided into four 8-channel banks of audio I/O: analog, AES/EBU, optical and embedded (SDI or HDMI). This section shows input and output activity for the three digital banks. The SRC light indicates that sample rate conversion is being applied to the corresponding digital input or output.

5. The CLOCK LEDs indicate the global audio sample rate at which the V4HD is operating. Use the MOTU Audio Console software to set the sample rate or to choose an external clock. When a sample rate is being detected, these lights will illuminate. The Time Code Lock LED illuminates when the V4HD is converting time code.

6. The TIME CODE Display rolls whenever the V4HD is converting time code from the time code input or perhaps from SDI-embedded time code. It also rolls during playback from host software (Premiere Pro) and reflects the position of the playhead on the timeline.

7. The VIDEO STATUS section provides quick feedback regarding the V4HD's current video operation. Press repeatedly the STATUS button (9) to cycle through the various modes. See “Video Status” on page 94 for details.

8. The V4HD LCD provides direct access to most of its settings. Repeatedly press the MENU button (9) to cycle through the main menus, and then use the PAGE and CURSOR buttons, along with the VALUE/ENTER knob, to choose and make settings. For complete details, see “Multi-Function LCD display” on page 95.

9. Repeatedly press the MENU button to cycle through the main menus in the programmable LCD. Repeatedly press the STATUS button to cycle through the various video status modes.

10. Use these buttons and knob to navigate the settings in the programmable LCD. For complete details, see “Multi-Function LCD display” on page 95.

11. This is a standard quarter-inch stereo headphone jack. From the factory, its output matches analog outputs 1-2 on the rear panel. But it can be programmed to mirror any other output pair. Use the volume knob above to control its level.

12. The PHONES knob is a rotary encoder that can be pushed as well as turned:
   - Turn it to adjust headphone volume. The LCD provides temporary feedback for the headphone level as you turn it.
   - Push in the knob (so that it clicks) and then turn it to adjust the volume of the analog outputs 1-2. The LCD provides temporary feedback as you twist the knob. By default, the knob controls analog outputs 1-2, but you can program it to control any output of the V4HD. To change this, use the LCD to choose the output. 

13. The V4HD is a FireWire device and uses the FireWire protocol. This means that you can turn off the V4HD, turn it back on (or even unplug it) without restarting your computer. Keep in mind, however, that if you wish to change the V4HD's settings with the MOTU Audio Console software, the V4HD needs to be plugged in and switched on.
Quick Reference: V4HD Rear Panel

1. The analog video I/O section of the V4HD is equipped with 12-bit converters that deliver 10-bit capture and playback, with support for both RGB or YPbPr color space. Once you've connected your SD and HD video device(s) to the appropriate jacks, you can choose any input (analog or digital) as a source (from the L0, or software onscreen) and the V4HD converts to all SD and HD output formats simultaneously, including the digital outputs discussed below.

2. The V4HD is packed full of state-of-the-art technology mounted on no less than six separate circuit boards. It gets hot in there. Be sure to leave plenty of room for the fan to move air through the V4HD enclosure. Try to avoid placing the V4HD above other heat sources.

3. Connect time code input and output here, to the LTC IN and LTC OUT. The V4HD supports all standard time code formats.

4. Connect blackburst or another video reference to the VIDEO REF IN. If the V4HD is at the end of the video sync daisy chain, flip the THRU/TERM switch to the 75 Ω TERM position. If you are daisy-chaining another device, flip it to THRU. This jack also supports HD Tri-level sync.

5. If you only need 2 or 4 channels of AES/EBU digital audio I/O, connect them to these XLR jacks. If you need 8 channels, connect a breakout cable to the DB25 connector below.

6. If you only need 1 to 4 channels of analog audio input and output, connect them to these 4 XLR input and output jacks. If you need 8 channels, connect a breakout cable to the DB25 connectors below. These analog inputs and outputs are equipped with 24-bit converters that support sample rates from 44.1 kHz up to 192 kHz.

7. If you need more than 4 channels of AES/EBU input/output and/or analog input/output, connect an 8-channel DB25 to XLR breakout cable to these DB25 connectors. When you do so, the rear panel XLR jacks become disabled. In other words, you can use either the XLRs or the breakout, but not both at the same time (8 channels maximum for each bank).

8. Connect a plasma, LCD, DLP or other HDMI-equipped monitor here. Alternately, you can connect a DVI-equipped device with an adapter cable. The V4HD supports 8-channel PCM (uncompressed) embedded audio over HDMI, so you could also connect this output to an HDMI-equipped home theater receiver to deliver both picture and multi-channel audio.

9. The two ADAT optical ("lightpipe") ports labeled IN/OUT provide 8 channels of digital audio input and output at 44.1 and 48 kHz. At the 2x sample rates (88.2 or 96 kHz), they provide channels 1-4 (in and out) and the second set (labeled in blue) provides channels 5-8 (in and out). When operating the optical ports at 2x sample rate, be sure to choose either Type I or Type II operation, as explained in "ADAT Type" on page 97.

10. Connect the V4HD to the computer here using any standard FireWire A (1394a) cable. Be sure to use FireWire A (400), as PCs do not support FireWire B.

11. In the event that a firmware update becomes available for the V4HD, you would connect this USB port to your computer and then use software to download the new firmware into the V4HD hardware.

12. Make audio WORD CLOCK connections here. The V4HD supports word clock sample rates up to 192 kHz. If you need to daisy chain another word clock-equipped device from the V4HD, connect it to the middle BNC connector and flip the THRU/OUT switch to THRU.

13. Connect the V4HD to the computer here using any standard FireWire A (1394a) cable. Be sure to use FireWire A (400), as PCs do not support FireWire B.

14. The V4HD has an internal, international, auto-switching power supply. Connect any AC power source from 100V to 240V.
Quick Reference: MOTU Video Console

This is the video source menu. The V4HD has two video modes:
In Capture/Convert mode, use this menu to choose the source video input on the V4HD's rear panel. This is the input that the V4HD routes to all outputs and the computer. In Playback mode, the Signal Path Diagram displays the playback signal path (from the computer to the V4HD outputs).

Indicates when the V4HD has successfully achieved lockup to the currently selected input or, in Playback mode, clock source, which could be the V4HD's internal clock or the video REF IN jack.

This area of MOTU Video Setup provides a signal path diagram (from left to right) for Playback mode or Capture/Convert mode. The upper path shows HD output and the lower path shows SD output. As indicated by arrows, some items are menus from which you can choose settings.

This column shows the various HD and SD destinations, including HD and SD outputs on the V4HD itself, the HDMI output (which can alternately be used for DVI output), and FireWire Capture (in Premiere Pro).

Click a tab to view its settings to the right. The SETUP tab has global settings, such as the Playback Only mode button. For complete details on the settings in these tabs, see chapter 6, "MOTU Video Console" (page 41).

Click a tab on the left to view its settings here.
Quick Reference: MOTU Audio Console

Click the General tab to access these settings.

If the V4HD’s eight 8-channel audio input and output banks are used, enabling these banks helps conserve FireWire bus bandwidth. For details, see “General tab Settings” on page 70.

The V4HD has a built-in 32-channel, 16-bus monitor mixer called CueMix. This option automatically ensures that live audio input patched through CueMix remains in sync with the V4HD’s video output. For example, if there is video conversion delay, CueMix will also be delayed to match it.

Engages sample rate conversion on the digital input or output bank that you choose. See “Sample rate conversion” on page 33.

The V4HD has a built-in 32-channel, 16-bus monitor mixer called CueMix. This option automatically ensures that live audio input patched through CueMix remains in sync with the V4HD’s video output. For example, if there is video conversion delay, CueMix will also be delayed to match it.

Engages sample rate conversion on the digital input or output bank that you choose. See “Sample rate conversion” on page 33.

The V4HD has a built-in 32-channel, 16-bus monitor mixer called CueMix. This option automatically ensures that live audio input patched through CueMix remains in sync with the V4HD’s video output. For example, if there is video conversion delay, CueMix will also be delayed to match it.

Engages sample rate conversion on the digital input or output bank that you choose. See “Sample rate conversion” on page 33.

The V4HD has a built-in 32-channel, 16-bus monitor mixer called CueMix. This option automatically ensures that live audio input patched through CueMix remains in sync with the V4HD’s video output. For example, if there is video conversion delay, CueMix will also be delayed to match it.

Engages sample rate conversion on the digital input or output bank that you choose. See “Sample rate conversion” on page 33.

The V4HD has a built-in 32-channel, 16-bus monitor mixer called CueMix. This option automatically ensures that live audio input patched through CueMix remains in sync with the V4HD’s video output. For example, if there is video conversion delay, CueMix will also be delayed to match it.

Word clock output can either match the current V4HD system clock (up to 192kHz) or you can force it to output the corresponding 1x rate (either 44.1 or 48kHz).
CHAPTER 1  About the V4HD

OVERVIEW
The V4HD is a FireWire video interface that can operate in two modes: as a video capture and playback device for a PC or as a stand-alone video converter/distribution hub.

As a video interface, the V4HD connects directly to a computer via a standard FireWire cable and turns a PC desktop or laptop computer into a powerful HD/SD video production workstation equipped with all the video and audio I/O needed to produce broadcast quality HD and SD video material.

In Premiere Pro, the V4HD provides hardware-accelerated capture and playback of DVCProHD, DVCPro50 and DVCPro25 video streams, plus 8- and 10-bit uncompressed SD — all with convenient plug-and-play FireWire connectivity and CPU-efficient intra-frame editing.

The V4HD is ideal for a DVCProHD/P2 workflow because you can immediately play back P2 clips (either imported or ingested) with no transcoding necessary. Conversely, you can connect any SD or HD video source such as an HDV camera, legacy video deck or DVD player and then capture it directly as a DVCProHD clip in Premiere. Many cameras now feed their uncompressed SDI or component output directly from the camera’s optics and image sensor, before compression, for the best-possible picture quality during capture with the V4HD.

The V4HD provides hardware-accelerated SD-to-HD up conversion for capturing SD sources in DVCProHD format. It also provides hardware-accelerated HD-to-SD down conversion.

When the V4HD is not connected to a computer via FireWire, it operates as stand-alone video converter/distribution hub, or as a stand-alone audio mixer.

A wide range of video equipment can be connected to the V4HD, from legacy SD camcorders and CRT monitors to the latest HD cameras, video decks, LCD reference monitors and plasmas — all at the same time, with no cable swapping.

In all modes, the V4HD dynamically converts the currently chosen input source to all outputs simultaneously. This allows you to connect all of your HD and SD gear, choose any source from your computer desktop and then monitor the source material in multiple formats simultaneously as you convert and capture. You can even monitor material in both HD and SD simultaneously with hardware-accelerated up/down conversion with pull-down insertion or removal.

The V4HD provides advanced synchronization and machine control features, including support for time code, 9-pin machine control, video reference and audio word clock. For audio synchronization, the V4HD employs Direct Digital Synthesis (DDS), a DSP-driven phase lock engine that delivers fast lockup times and sub-frame accuracy.

The V4HD is housed in a rugged aluminum alloy chassis with a standard 19-inch, two-space, rack-mountable form factor. Included rack mounting brackets can easily be removed for convenient desktop operation.
The V4HD is designed to streamline your video production workflow, with unified control over all your video gear from the convenience of your computer desktop.

**FEATURE HIGHLIGHTS**

- **HD/SD FireWire video interface** — provides HD and SD capture and playback for any current-generation FireWire equipped computer.
- **Plug-and-play connectivity via FireWire 400 or 800** — connects to either a desktop tower or a portable laptop.
- **Supports Apple Final Cut Pro (Mac) and Adobe Premiere Pro (Windows).**
- **Captures and plays all standard HD and SD formats up to and including 1080p30 (720p, 1080i, 1080p and 1080PsF).**
- **Hardware-accelerated DVCPro capture/playback** — provides hardware-accelerated capture and playback of industry standard DVCProHD/P2, DVCPro50 and DVCPro25 video streams to/from Premiere Pro.
- **Pristine HD quality and efficient editing** — DVCProHD format provides 10-bit 4:2:2 broadcast quality color and CPU-efficient, intra-frame native editing.
- **Captures and plays uncompressed SD** — 8-bit or 10-bit NTSC or PAL.
- **HDMI monitoring** — connect a large-format HD plasma, reference LCD, consumer DLP or other flatscreen for flexible and affordable “pixel for pixel” HD monitoring.
- **Broadcast quality hardware-based real time SD-to-HD up-convert** — capture SD while working in HD; monitor HD when working in SD.
- **Broadcast quality hardware-based real time HD-to-SD down-convert** — capture HD while working in SD; monitor SD when working in HD.
- **Hardware-accelerated 2:3 or 2:3:3:2 pull-down insertion and removal** — go between film and NTSC rates in real time, with no rendering required.
- **Comprehensive up/down conversion formatting** — anamorphic, pillar box, letterbox, 14:9 pillarbox, 14:9 letterbox and full screen.
- **Simultaneous HD/SD operation** — connect multiple HD and SD sources and destinations simultaneously. Switch HD/SD sources on the fly while converting to multiple HD/SD destinations. All outputs are “hot”, regardless of source format.
- **Two rack space form factor with dedicated connectors** — no cable swapping or gangly, inconvenient breakout cables.
- **Stand-alone operation** — converts and distributes selected input source to all supported output formats with SD-to-HD up-convert, HD-to-SD down-convert and pull-down insertion/removal.

**VIDEO I/O**

- **1 x HD-SDI in and out (4:2:2 10-bit) on independent BNC connectors**
- **1 x SD-SDI in and out (4:2:2 10-bit) on independent BNC connectors**
- **1 x extra HD-SDI output connector**
- **1 x extra SD-SDI output connector**
- **1 x HDMI output (4:2:2 10-bit, YCbCr or RGB)**
- **Support for DVI output with HDMI-to-DVI adapter (sold separately)**
- **1 x HD component in and out (10-bit, YPbPr or RGB) on independent BNCs**
- **1 x SD component in and out (10-bit, YPbPr or RGB) on independent BNCs**
- **1 x composite in and out (10-bit)**
- **1 x S-video in and out (10-bit)**
■ 12-bit A/D and D/A converters on all analog video in/out with up to 8x oversampling

VIDEO FORMATS
■ SD — 576i25 (PAL), 480i29.97 and 486i29.97 (NTSC)
■ Supported Premiere Pro HD formats — DVCProHD 720p at all eight frame rates listed above, plus DVCProHD 1080 (1280 and 1440 rasters) at all 1080 frame rates listed above
■ Supported Premiere SD formats — Uncompressed 8-bit and 10-bit, DVCPro and DVCPro 50 at 480p23.976, 480i29.97 and 576i25
■ 480p23.976 SD capture and playback with hardware pull-down insertion/removal

AUDIO I/O
■ 32 channels of simultaneous audio input and output
■ 8 channels of analog in/out at all standard sample rates from 44.1 to 192kHz
■ 4 x XLR analog in/out — 4-channel direct connection without a breakout cable
■ 8 channels of AES/EBU digital in/out at sample rates up to 96kHz
■ 2 x AES/EBU connectors — 4-channel direct connection without a breakout cable
■ 8-channel HD-SDI and SD-SDI embedded audio in/out, 24-bit at 44.1 or 48kHz
■ 8-channel HDMI embedded audio output, 24-bit at 44.1 or 48kHz
■ Embeds SDI and HDMI multi-channel audio streams; de-embeds SDI audio input
■ 8-channel ADAT optical digital audio in/out — includes a second bank of optical connectors for 8-channel operation at sample rates up to 96kHz
■ Flexible 8-channel sample rate conversion — apply rate conversion to any 8-channel digital input or output bank, including AES/EBU, embedded and optical
■ Front panel headphone jack with dedicated volume control
■ Programmable front panel volume control for up to 32 audio outputs — control output level for any/all outputs, from stereo main outs to 7.1 surround to all 32 outs
■ CueMix FX built-in monitor mixer — 32-channel, 16-bus mixer for monitoring live inputs from cameras, mic preamps or other audio sources with virtually no delay.
■ Set up send/return loops to digital mixers and outboard audio processing.
■ Multiple CueMix FX mixes — create 16 separate stereo monitor mixes (4 stereo at 176.4 or 192kHz) for main outs, headphones, outboard gear send/return loops, etc.
■ Audio delay compensation — both fully automated and programmable controls ensure that audio always remains perfectly in sync with picture
■ Audio only mode — operates as a 24 channel cross-platform audio interface
■ Stand-alone operation — mix and monitor with no computer connected

SYNC AND DEVICE CONTROL
■ Video reference in and thru — resolve to blackburst, composite or HD Tri-level sync
■ Time code in and out — generate and resolve to time code (LTC, SD VITC or embedded)
■ RS-422 machine control — control the transports of a connected camera or video deck using Premiere Pro or other machine control host via standard 9-pin protocol

■ Word clock in, out and thru — continuously resolve to audio word clock from a digital mixer, distribution box or other source at sample rates from 44.1 to 192K

■ Direct Digital Synthesis — DSP-driven phase lock engine provides ultra-low jitter

■ Field upgradable firmware via USB

FRONT PANEL PROGRAMMING AND MONITORING
■ Access to most settings directly from the front panel backlit LCD

■ 8 dedicated 10-segment ladder LEDs with clip indicators for all 8 analog audio ins

■ 8 programmable 10-segment ladder LEDs with clip indicators for displaying any 8-channel bank (analog, AES/EBU, optical or embedded) in or out

■ Video status LEDs — quick access to capture/playback settings for each video format

■ Time code display — provides frame-accurate time code readout when converting or generating time code, or during playback from host software

POWER
■ International auto-switching internal power supply

INCLUDED SOFTWARE AND COMPATIBILITY
■ Includes MOTU Video console software — graphically displays HD and SD signal path and provides complete control of all programmable features and settings

■ Includes CueMix FX software — provides on-screen mixing of all 32 audio channels of analog and digital audio input and output via graphic mixer with 32 faders

■ Supports Premiere Pro CS3 (version 3.1) or later
CHAPTER 2 Packing List and Windows System Requirements

PACKING LIST
The V4HD ships with the items listed below. If any of these items are not present in your V4HD box when you first open it, please immediately contact your dealer or MOTU.

■ One V4HD with removable rack ears
■ One FireWire 400 cable
■ One FireWire 800 cable
■ One power cord
■ One V4HD Mac/Windows manual
■ One software installer CD
■ Product registration card

WINDOWS SYSTEM REQUIREMENTS
The V4HD system requires the following Windows system:

■ A Pentium-4 based PC or faster equipped with at least one FireWire port
■ At least 1 GB (gigabyte) of RAM (2 GB or more is recommended)
■ Windows XP (SP2) or Windows Vista
☛ If you are running Windows XP SP2, you will need to download hot fix 885222 from Microsoft. To do so, please visit:
  http://support.microsoft.com/kb/885222
■ A large hard drive (preferably at least 500 GB)

PLEASE REGISTER TODAY!
Please register your V4HD today. There are two ways to register.

■ Visit www.motu.com/registration to register online

OR

■ Fill out and mail the included product registration card

As a registered user, you will be eligible to receive technical support and announcements about product enhancements as soon as they become available. Only registered users receive these special update notices, so please register today.

Thank you for taking the time to register your new MOTU products!
CHAPTER 3  IMPORTANT! Run the V4HD Software Installer First

INSTALL THE V4HD SOFTWARE FIRST!
Before you connect the V4HD audio interface to your computer and turn it on, insert the V4HD software CD and run the V4HD Software Installer. This ensures that all the V4HD components are properly installed in your system.

If Windows asks you to locate the drivers
If you’ve already connected the V4HD to your computer and switched it on, Windows probably issued an alert notifying you that the V4HD requires drivers, followed by another window asking you to locate the drivers on disk. If this happens:

1  Cancel the driver search.

2  Switch off the V4HD.

3  Run the V4HD Software Installer as instructed in the next section.

INSTALLING THE V4HD SOFTWARE
To install the V4HD software, insert the V4HD software CD and run SetupVideo.exe. Also be sure to read the Read Me file for installation assistance. The V4HD ships with the following software for Windows:

<table>
<thead>
<tr>
<th>Software component</th>
<th>Purpose</th>
<th>For more information</th>
</tr>
</thead>
<tbody>
<tr>
<td>V4HD presets</td>
<td>Provides 36 project presets for Premiere Pro. These help you quickly configure Premiere for the V4HD.</td>
<td>See “Project presets” on page 58</td>
</tr>
<tr>
<td>MOTU Video console</td>
<td>Provides access to all of the V4HD’s video settings.</td>
<td>See chapter 6, “MOTU Video Console” (page 41)</td>
</tr>
<tr>
<td>MOTU Audio console</td>
<td>Provides access to all of the audio settings in the V4HD and other MOTU interfaces connected to the computer.</td>
<td>See chapter 8, “MOTU Audio Console” (page 69)</td>
</tr>
<tr>
<td>MOTU SMPTE console</td>
<td>Provides access to the V4HD’s time code sync features.</td>
<td>See chapter 10, “MOTU SMPTE Console” (page 85)</td>
</tr>
<tr>
<td>CueMix FX</td>
<td>Gives you complete control over the V4HD’s CueMix mixing feature, which provides no-latency monitoring and mixing of live inputs through your V4HD system.</td>
<td>See chapter 9, “CueMix FX” (page 77)</td>
</tr>
</tbody>
</table>
IMPORTANT! RUN THE V4HD SOFTWARE INSTALLER FIRST
CHAPTER 4 Installing the V4HD Hardware

OVERVIEW
Here's an overview for installing the V4HD:

Did you run the software installer first? 21
SD and HD video over FireWire 21
Connect the V4HD to your computer 22
Connect video inputs and outputs 22
Example V4HD video connections 25
Connect audio inputs and outputs 26
Example V4HD audio connections 28
Video sync connections 29
Time code connections 29
Audio word clock 29
RS-422 machine control 30
Syncing digital audio devices 31

DID YOU RUN THE SOFTWARE INSTALLER FIRST?
Before connecting the V4HD hardware to your PC, be sure to run the software installer first. See chapter 3, "IMPORTANT! Run the V4HD Software Installer First" (page 19).

SD AND HD VIDEO OVER FIREWIRE
The V4HD connects to your Windows computer via FireWire A.

FireWire A operates at 400 Megabits per second (Mb/sec). This is enough bandwidth to carry eight channels of simultaneous 192 kHz audio input and output, along with a video stream that consists of either uncompressed SD or compressed HD. Even at the highest video bandwidth (uncompressed SD at 207 Mb/sec), there is still plenty of bandwidth leftover to transmit an 8-channel bank of audio.

Daisy-chaining FireWire devices
FireWire A provides enough bandwidth for the V4HD to operate by itself. FireWire A does not, however, provide enough bandwidth for additional devices connected to the same bus. Therefore, do not daisy-chain other devices to its FireWire bus.

Multiple FireWire ports
If your computer supplies multiple FireWire ports, that doesn't necessarily mean they operate on completely separate FireWire busses. In fact, chances are good that they share the same bus. So plan accordingly for your FireWire resources.

FireWire is for computer connection only
The V4HD does not serve as a FireWire host: it only operates as a FireWire client to a host computer. This means that you cannot connect cameras, hard drives or other client FireWire devices to the V4HD when it is operating as a stand-alone converter (with no computer connected). When the V4HD is operating in stand-alone mode, the only way to connect a camera to the V4HD is through the standard video connectors (analog, SDI, etc.) For more information about stand-alone operation, see chapter 11, "Standalone Operation" (page 91).
CONNECT THE V4HD TO YOUR COMPUTER

1. Plug one end of the V4HD FireWire cable into the FireWire A socket on the computer as shown below in Figure 4-1.

You must connect the V4HD to your PC using FireWire A. PCs do not support FireWire B.

2. Plug the other end of the FireWire cable into the V4HD I/O as shown below in Figure 4-1.

CONNECT VIDEO INPUTS AND OUTPUTS

The V4HD provides a wealth of video input and output connectivity, from consumer analog formats such as S-video and composite to broadcast formats such as HD-SDI. Internally, the V4HD has been designed to support all video input and output simultaneously, allowing you to choose any input as the current source signal while the V4HD simultaneously converts that signal to all output formats, including real-time encoding for transfer over FireWire to the computer for capture in Premiere Pro.

Keep this in mind as you make your video connections. For example, you can connect both SD and HD gear to their respective inputs and outputs during installation, and simply choose among them from your computer desktop during routine operation. In the case of the SD- and HD-SDI connectors, two outputs are provided, allowing you to connect four SDI destinations (two SD and two HD) that share the same output signal.

Support for both NTSC and PAL

The V4HD supports both NTSC and PAL formats on all inputs and outputs. It does not, however, convert between NTSC and PAL. Instead, it operates all inputs and outputs in one format or the other, as determined by the chosen video source. For details about choosing a video source, see “Video Source menu” on page 44.

S-video (Y/C)

Connect any S-video source or destination, including consumer or prosumer camcorders, desktop video converters, VTRs, or monitors. For best results, use standard, high-quality shielded 4-pin mini-DIN S-video cables. You can connect the same device to both the input and output, or you can connect two separate devices (one to the input and the other to the output).
Composite
Connect any composite source or destination, including consumer or prosumer camcorders, desktop video converters, VTRs, or monitors. For best results, use standard, high-quality shielded video RCA cables. You can connect the same device to both the input and output, or you can connect two separate devices (one to the input and the other to the output).

Component
The component video section provides simultaneous connection to both HD and SD component inputs and outputs. The V4HD provides 10-bit analog performance with 12-bit A/D and D/A converters. In general, component video signals tend to be higher quality than composite or S-video, so to take full advantage of the component format, be sure to use high quality shielded BNC cables.

YPbPr or RGB
The V4HD SD and HD component input and output sections support YPbPr or RGB operation, as shown by the color legend on the rear panel.

Each of the four banks (SD in, SD out, HD in and HD out) can be independently configured for either RGB or YPbPr operation. This setting is made in the MOTU Video console software. For the component inputs, see “Video Source menu” on page 44. For the component outputs, see “SD Component Output Color Mode” on page 51 and “HD Component Output Color Mode” on page 51. Be sure that the mode you choose for each bank matches the component video source or destination to which it is connected. If the device you are connecting supports both RGB and YPbPr, use YPbPr, as it is the standard for broadcast video. It is also the native color space for DVCPro compression.
Analog YPbPr component video is sometimes referred to by other names, such as YUV, Y/R-Y/B-Y or YCbCr.

**SD (480i) component formats**
The V4HD supports four different SD component formats: SMPTE/EBU N10, Sony Beta, Sony Beta Japan and Panasonic MII. This setting is made in the MOTU Video console software. See “480i Component Analog Format” on page 49 and “480i Setup” on page 49. For PAL (576i) and HD component operation, the V4HD supports the industry standard SMPTE/EBU N10 specification.

**HD-SDI and SD-SDI**
The V4HD provides HD-SDI input and output, together with independent SD-SDI input and output, in professional, broadcast quality 10-bit 4:2:2 resolution. For both HD- and SD-SDI, a second output is provided, allowing you to connect a second SDI output device. For example, you could connect an HD monitor, HD video deck, SD monitor and SD video deck, all at the same time, via the four SDI outputs.

For best results, be sure to use cables that are designed for SDI use (such as Belden part number 8281, or similar). The V4HD has been designed to support SDI cable lengths up 500 feet with SDI rated cables.

**HDMI / DVI Output**
The V4HD provides an HDMI output, which lets you connect any device equipped with an HDMI input. This connector is ideal for connecting a plasma screen, LCD screen or even a home theater receiver. The V4HD supports up to 8 channels of PCM (uncompressed) audio output via the HDMI connection for devices that can receive digital audio via HDMI.

**DVI Output**
Using a HDMI-to-DVI cable, or a female HDMI-to-male DVI plug adaptor connected to one end of an HDMI-to-HDMI cable, you can connect the V4HD’s HDMI output to the DVI input of another device, such as a computer monitor. In addition to the cable connection, you also need to make a software setting that changes the V4HD’s HDMI output signal to the DVI format. See “HDMI/DVI” on page 47.
EXAMPLE V4HD VIDEO CONNECTIONS
Here is an example of the types of video devices that you can connect to the V4HD. You can mix and match HD and SD sources and destinations, connect them all, and then choose the desired source from the MOTU Video console software.

Figure 4-4: V4HD video connections.
CONNECT AUDIO INPUTS AND OUTPUTS
The V4HD provides 32 channels of simultaneous audio input and output (Figure 4-5), grouped in four banks of eight channels each: analog, AES/EBU, optical and embedded (for SDI and HDMI out). For connecting the first three banks, see the following sections. For embedded, make the SDI and/or HDMI connections as described earlier and then enable embedded audio. See “SDI Input and SDI/HDMI Output” on page 73.

Analog audio I/O
The V4HD provides eight channels of analog audio input and output at standard sample rates from 44.1kHz up to 192kHz.

4-channel operation
As shown in Figure 4-5, the Analog Input section and Analog output section each supply four XLR connectors directly on the rear panel. These input and output jacks provide four channels each of analog input and output via direct connection to the V4HD rear panel using standard XLR cables.

8-channel operation
If you need eight channels of analog input or output, a DB25-to-XLR breakout cable (Figure 4-6) is required (sold separately).

For eight channels of analog input, the breakout cable requires a male DB25 connector on one end and eight female XLR connectors on the other end.

For eight channels of analog output, the breakout cable requires a female DB25 connector on one end and eight male XLR connectors on the other end.

For best performance (and to avoid issues with termination and impedance levels), do not connect cables to the rear panel XLR jacks and the DB25 cable in the same section at the same time.

Within each section (analog in and analog out), XLR and breakout cable operation are mutually exclusive. You cannot use both the XLR jacks and the breakout cable at the same time.

Figure 4-5: The V4HD audio connectors.
AES/EBU digital audio I/O
The V4HD provides eight channels of 24-bit AES/EBU digital audio input and output at standard sample rates from 44.1 kHz up to 96 kHz.

4-channel vs. 8-channel operation
As shown in Figure 4-5, the AES/EBU section supplies four XLR connectors directly on the rear panel. These input and output jacks provide four channels each of AES/EBU digital input and output via direct connection to the V4HD rear panel using standard AES/EBU-grade cables.

Similar to the analog section, as explained in “8-channel operation” on page 26, the V4HD provides eight channels of AES/EBU input or output using a DB25-to-XLR breakout cable (sold separately). However, the requirements for this cable are different than those for the analog section. The AES/EBU breakout cable supplies 8 channels of AES/EBU input on four female XLR connectors and 8 channels of AES/EBU output on four male XLR connectors, as shown in Figure 4-7.

Synchronization and sample rate conversion
When making AES/EBU digital audio transfers to and from the V4HD, the two devices must be synchronized with one another, or you must employ the V4HD’s sample rate conversion. See “Syncing digital audio devices” on page 31.

ADAT optical digital I/O
The V4HD provides 8-channel ADAT optical digital input and output at 44.1, 48, 88.2 and 96 kHz. The V4HD rear panel provides two sets of ADAT optical (“lightpipe”) connectors to support 8-channel operation even at the 2x sample rates (88.2 or 96 kHz).

Reminder: optical goes OUT to IN and IN to OUT. Input and output are independent. For example, you could connect ADAT optical input from your digital mixer and connect the output to another optical-equipped device.

Optical operation at 44.1 or 48 kHz
When connected to an ADAT “lightpipe” compatible device, the two optical connectors marked IN and OUT provide eight channels of digital input and output at 44.1 and 48 kHz.

In addition, when operating the V4HD at a 1x sample rate (either 44.1 or 48 kHz), optical output is duplicated on the second optical output marked 5-8@96K. This lets you send the V4HD’s 8-channel ADAT optical output to two separate destinations in your studio, if needed.

Optical operation at 88.2 or 96 kHz
When operating the V4HD at the 2x sample rates (88.2 or 96 kHz), the two optical connectors marked IN and OUT provide channels 1-4 (in and out) and the second set of optical connectors marked 5-8@96K provide channels 5-8 (in and out) when connected to another optical device that supports 88.2/96 kHz optical sample rates.
When operating the optical ports at a 2x sample rate, be sure to choose either Type I or Type II operation, as explained in “ADAT Type” on page 97.

Synchronization and sample rate conversion
When making optical digital audio transfers to and from the V4HD, the two devices must be synchronized with one another, or you must employ the V4HD’s sample rate conversion. See “Syncing digital audio devices” on page 31.

**EXAMPLE V4HD AUDIO CONNECTIONS**

Figure 4-8 shows an example of the types of audio connections you can make between other devices and the V4HD. You can mix and match analog and digital sources and destinations, connect them all, and then mix them using the CueMix FX software. The 8-channel banks of optical and AES/EBU digital I/O are ideal for connection to a digital mixer.

Figure 4-8: V4HD audio connections.
VIDEO SYNC CONNECTIONS
Connect a video sync source, such as blackburst, to the VIDEO REF IN jack (Figure 4-9). This input accepts either a Bi-level (SD) sync source or a Tri-level (HD) sync source. The V4HD can resolve to a VIDEO REF IN signal only when it is in Playback mode. When it is in Capture or Convert mode, it genlocks to the current video source. For further information, see “Playback Clock Source” on page 53.

Video ref termination and “thru”
The V4HD lets you daisy-chain the VIDEO REF signal to another video device using the THRU jack below the VIDEO REF jack. If you connect a device to the THRU jack, set the termination switch (Figure 4-9) to the THRU position.

If the V4HD is the only device (or the last device in a daisy-chain), set the termination switch to the 75Ω TERM position. This is crucial for successful genlock.

Figure 4-9: Video sync connectors.

TIME CODE CONNECTIONS
Connect any time code source, such as the time code output from a camera or VTR, to the LTC IN jack (Figure 4-9). If you wish to transmit time code from the V4HD to another device, connect the V4HD LTC OUT to the time code input on the other device. See chapter 10, “MOTU SMPTE Console” (page 85) for information about managing the V4HD’s time code features.

AUDIO WORD CLOCK
The V4HD word clock connectors (Figure 4-10) allow you to synchronize it with any other word clock-equipped device.

For standard word clock sync, you need to choose an audio clock master. In the simplest case, you have two devices and one is the word clock master and the other is the slave as shown in Figure 4-15.

When the video features of the V4HD are disabled (see “Enable Video” on page 50) and the V4HD is operating as an audio interface, you can resolve the V4HD to another device: connect its word clock output to the V4HD’s WORD IN jack (Figure 4-11).

Figure 4-10: Audio word clock connectors.

Figure 4-11: Slaving the V4HD to word clock. For the V4HD clock source, choose Word Clock In. This configuration is only supported when the V4HD is running in Audio Only mode (video features are disabled).
To resolve another device to the V4HD (even when video is enabled), connect the V4HD’s WORD OUT jack to the word clock input on the other device (Figure 4-12).

**Word clock out/thru**

The V4HD provides a third word clock output that can function either as a second output or as a word clock thru jack. Just set the accompanying switch as desired. In Thru mode, termination is disabled so that you can daisy chain another word clock device. Make sure the device has its own proper termination for the end of the word clock chain.

**Slaving to a 2x and 1/2x word clock**

The V4HD has the ability to slave to a word clock signal running at either twice or half their current clock rate. For example, the V4HD could be running at 96 kHz while slaving to a 48 kHz word clock signal from another device. Similarly, the V4HD could run at 88.2 kHz and slave to 44.1 kHz word clock. Conversely, the V4HD could run at 48 kHz and slave to a 96 kHz word clock signal.

Remember, the word clock signal must be one of the following:

- the same as the V4HD clock
- twice the V4HD clock
- half of the V4HD clock

**Forcing a 1x word out rate**

When the V4HD is operating at a 2x or 4x sample rate, it can generate a word clock output signal that either matches the current system clock rate (any rate between 88.2 and 192kHz) or the corresponding 1x rate. For example, if the V4HD is operating at 192kHz, you can choose to generate a word out rate of 48kHz. For details on how to make this word clock output setting, see “Word Out” on page 75.

**RS-422 MACHINE CONTROL**

If you have a VTR or other device equipped with Sony 9-pin compatible machine control, and you would like to control it using Premiere Pro’s machine control features, connect its RS-422 port to the V4HD’s RS-422 port (Figure 4-13). Also see “Device control” on page 64.
SYNCING DIGITAL AUDIO DEVICES
If you would like to transfer audio digitally between the V4HD and another device that has AES/EBU or ADAT optical digital I/O, there are three basic scenarios in which the V4HD could make a digital audio transfer:

- The V4HD video features are enabled and it is therefore resolved to its video clock.
- The V4HD video features are disabled, and you are running the V4HD as an audio interface (see “Audio only” on page 39).
- Regardless of the V4HD’s current operational mode, you would like to use the V4HD’s digital audio sample rate conversion feature.

The audio clock synchronization requirements for these three scenarios are described in the following sections, starting with a general discussion of digital audio phase lock, and why it is essential for clean and successful digital audio transfers.

Digital audio phase lock
Without sample rate conversion, when you transfer digital audio between two devices, their audio clocks must be in phase with one another — or phase-locked — as demonstrated below in Figure 4-14. Otherwise, you’ll hear clicks, pops, and distortion in the audio, or perhaps no audio at all.

Figure 4-14: When transferring audio without sample rate conversion, two devices must have phase-locked audio clocks to prevent clicks, pops or other artifacts.

Without sample rate conversion, there are two ways to achieve phase lock: slave one device to the other, or slave both devices to a third master clock. If you have three or more digital audio devices, you need to slave them all to a single master audio clock.

Audio phase lock as shown above in Figure 4-15 can be achieved independently of time code (location). For example, one device can be the time code master while another is the clock master. But only one device can be the audio clock master.

Another benefit of direct master/slave clocking (without sample rate conversion) is that each slaved device remains continuously resolved to the master, which means that there will be no gradual drift over time. This form of synchronization is best for audio that must remain resolved to picture.

Audio synchronization when capturing, converting or playing video
When the V4HD is capturing, converting or playing video (as further explained later in “Five modes” on page 37), its audio clock (see “Clock Source” on page 71) resolves to its video clock. The V4HD has three possible sources for video clock:

- The currently chosen video source (Figure 6-3 on page 43 and Figure 6-5 on page 44)
- The VIDEO REF IN jack
- The V4HD’s own internal video clock, when it is playing from the computer, or in Playback only mode (page 38)

Resolving to the current video source
If the V4HD is transmitting or receiving digital audio from the current video source, the video genlock between the two devices ensures that their digital audio clocks remain resolved and phase locked, as demonstrated in Figure 4-16:
INSTALLING THE V4HD HARDWARE

Figure 4-16: When capturing digital audio from the current video source, the V4HD genlocks to the source input, which keeps the digital audio clock properly resolved to the video source audio clock.

Resolving a third device to the V4HD
If you need to make digital audio transfers between the V4HD and third device (that is not the current video source), you must resolve the third device to the V4HD, as demonstrated in Figure 4-17. In this example, the third device, a field recorder, is being resolved to the V4HD via word clock. Alternately, it could be resolved via AES/EBU or ADAT optical input.

Resolving a digital mixer to the V4HD
If the V4HD is currently operating as a video interface (i.e. "Audio only" mode is not enabled), and you would like to connect a digital mixer via ADAT optical or AES/EBU (or both), resolve the digital mixer to the V4HD, either via its optical or AES/EBU connection, or via word clock, similar to what is shown in Figure 4-17.

Resolving to the VIDEO REF IN
If the V4HD is currently resolved to its VIDEO REF IN, you can either resolve the other digital audio device to the V4HD (Figure 4-17), or you can resolve the other device to the same genlock source that is feeding the V4HD’s VIDEO REF IN. In this scenario, the genlock source serves as a master clock to which both the V4HD and the other device are resolved (Figure 4-15).

Digital audio transfers in Playback only mode
When the V4HD is in Playback only mode (see “Playback / Playback only” on page 38), resolve other digital audio devices to the V4HD, either via their optical or AES/EBU connection, or via word clock, similar to what is shown in Figure 4-17.

Audio synchronization in ‘Audio only’ mode
If the V4HD video features are disabled with “Audio only” mode (page 39), then the V4HD operates as an audio interface with a variety of options for digital audio clocking (without requiring sample rate conversion). You can resolve other digital audio devices to the V4HD or vice versa, using word clock or their digital audio connections (ADAT optical or AES/EBU).

If you choose the V4HD as the clock master, set its audio clock source (“Clock Source” on page 71) to Internal and resolve the other device to its word clock or digital audio connection to the V4HD.

Figure 4-17: Capturing digital audio from a third device that is not the current video source. In this case, the third device must resolve to the V4HD via word clock in, AES/EBU input or ADAT optical input.
If you choose the other device, such as a digital mixer, as the clock master, resolve the V4HD to it via word clock in, AES/EBU in or ADAT optical in, as demonstrated below in Figure 4-18.

Sample rate conversion
The V4HD is equipped with one 8-channel bank of real-time sample rate conversion that can be assigned to any individual input or output bank using the “Sample Rate Convert” software option (page 73). This feature provides a great deal of flexibility in making digital transfers. For example, you can:

- Transfer digital audio into the V4HD at a sample rate that is completely different than the V4HD system clock rate.
- Transfer digital audio into the V4HD without the need for any external synchronization arrangements.
- Transfer digital audio out of the V4HD at double or half the V4HD system clock rate.
- Transfer digital audio running at a 1x or 2x sample rate (from 44.1 kHz to 96 kHz) in or out of the V4HD while the V4HD is running at a corresponding 4x sample rate (176.4 or 192 kHz)

Rate conversion does not add any appreciable noise to the audio signal (under -120 dB).

With sample rate conversion (SRC), an extra level of master/slave clocking is added to the equation, as demonstrated below in Figure 4-20, which shows the clocking going on when you transfer digital audio from the V4HD (AES/EBU out) to a video deck (AES/EBU in) using SRC. Notice that with SRC, the video deck is not slaved to the V4HD’s system clock. Instead, their clocks are running completely independently of one another. But also notice that the video deck must still slave to the sample-rate-converted output from the V4HD for a clean digital audio transfer (unless it has its own sample rate converter on its AES/EBU input).
INSTALLING THE V4HD HARDWARE

Figure 4-20: Clock relationships when sending audio from the V4HD to a video deck using sample rate conversion. The video deck needs to be slaving to its AES/EBU input. Note: the V4HD AES/EBU output can be clocked from a number of different sources. In this example, it is resolved to the V4HD system clock. For details about other possible clock sources, see “Rate convert options for digital audio output” below.

Here are a few examples:

Figure 4-21: Rate-converting AES/EBU input.

Figure 4-22: Capturing digital audio from a device that is not resolved with the V4HD. In this case, sample rate conversion is used.

A caution about using rate conversion
Rate conversion can be a life saver in situations where resolving digital audio clocks is difficult or impossible. However, when you do so, you run the risk of the audio drifting apart from picture over time. If the audio clip being captured is short, this may not be an issue. But for longer record/playback passes (more than a few minutes), you are much better off resolving the V4HD to picture during the digital audio transfer.

Most devices employ a clock crystal that has an accuracy of ±50 parts per million, which produces drift that amounts to approximately one frame every five minutes at 60 fps.

Rate convert options for digital audio output
The V4HD digital audio output banks can also employ sample rate conversion. For details see “Sample Rate Convert” on page 73.
Part 2

Video Operation
CHAPTER 5  V4HD Basics

ONE INPUT TO ALL OUTPUTS
The basic design concept of the V4HD is that you choose a video input and the V4HD sends the signal to all outputs, converting the signal where necessary to conform to the output format, regardless of the input signal format. Most common conversions are supported, although not all. In those few cases, the corresponding output does not produce a signal.

This allows you to simultaneously connect a number of input devices, such as cameras, video decks, DVD players, etc., along with a number of output devices, such as monitors, video decks and other destinations. Then choose the desired input device and the V4HD will feed that signal to all output destinations simultaneously.

The settings in the MOTU Video console software let you conveniently manage the V4HD’s many routing and conversion features.

Think of FireWire as another input or output
FireWire is, of course, the V4HD’s connection to the computer. However, it might be useful to think of the FireWire cable as another video input and output. It can be disabled or chosen as the current video source, just like one of the video connectors on the rear panel of the V4HD.

Choosing the current video source
The MOTU Video console software lets you choose the current video source (input). For details, see “Video Source menu” on page 44. This can also be done from the front panel LCD. See “Video menu” on page 96.

Audio I/O and monitoring
On the audio side of things, the V4HD feeds audio input to the computer and plays audio back from the computer, so that you can easily capture and playback audio in Premiere Pro. But the V4HD also has a powerful mixer that lets you route inputs to outputs, independently of what is going on with capture and playback on the computer. This powerful audio monitor mixer is managed from the CueMix FX software (page 77).

FIVE MODES
The V4HD provides five modes of operation:

■ Capture
■ Convert
■ Playback / Playback only
■ Audio only
■ Standalone (video or audio only)

The current mode is clearly indicated by the MODE LEDs in the VIDEO STATUS section of the front panel (Figure 5-1). In some cases, multiple LEDs may illuminate, such as the Standalone and Audio only LEDs, to indicate Standalone/audio only mode.

Choosing the current video source
The MOTU Video console software lets you choose the current video source (input). For details, see “Video Source menu” on page 44. This can also be done from the front panel LCD. See “Video menu” on page 96.

Audio I/O and monitoring
On the audio side of things, the V4HD feeds audio input to the computer and plays audio back from the computer, so that you can easily capture and playback audio in Premiere Pro. But the V4HD also has a powerful mixer that lets you route inputs to outputs, independently of what is going on with capture and playback on the computer. This powerful audio monitor mixer is managed from the CueMix FX software (page 77).

FIVE MODES
The V4HD provides five modes of operation:

■ Capture
■ Convert
■ Playback / Playback only
■ Audio only
■ Standalone (video or audio only)

The current mode is clearly indicated by the MODE LEDs in the VIDEO STATUS section of the front panel (Figure 5-1). In some cases, multiple LEDs may illuminate, such as the Standalone and Audio only LEDs, to indicate Standalone/audio only mode.
Capture
The V4HD is in Capture mode when it is connected to the computer and video software has actively taken control of the V4HD hardware for the purposes of capturing video and audio from the V4HD via the FireWire connection. Here are some examples of when video software would put the V4HD into Capture mode:

- You open the Capture window in Premiere Pro. Or you use any Premiere Pro feature that involves capturing or previewing the live video input from the V4HD.
- You run the MOTU Video console software and click the Preview tab (Figure 6-1 on page 41, Figure 6-26 on page 52). This causes MOTU Video console to “take over” the FireWire video signal being supplied by the V4HD and display it in the preview window.

Even though the primary purpose of Capture mode is to feed video to the computer via FireWire, the V4HD continues to simultaneously convert the source video signal and send it to all video outputs as well. This allows you to simultaneously monitor what you are capturing using any combination of the V4HD’s video outputs. You could even dub the source signal to a video deck or other video recorder during capture.

Convert
Convert mode is almost identical to Capture mode (above), except that the V4HD does not feed video to FireWire and the computer. However, the currently selected video source is still fed to all other V4HD video outputs. Convert mode serves as a “default” mode for the V4HD, when none of the other modes are currently engaged.

Playback / Playback only
The V4HD goes into Playback mode when an application is sending video to it. Otherwise, the V4HD reverts to Convert mode, or Capture mode when you go into the Capture window.

The Playback Only (disable inputs) option in the MOTU Video console software Setup tab (Figure 6-19 on page 48) lets you force the V4HD to stay in playback mode. Playback Only mode is useful when you are at a point in your workflow where you are not doing any capturing. For example, you may have no inputs connected to the V4HD hardware, or you may have inputs connected, but you are not currently using them.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
<th>Video Inputs active</th>
<th>Video Outputs active</th>
<th>FireWire capture</th>
<th>Clock source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture</td>
<td>FireWire video capture, with all outputs active.</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Video source</td>
</tr>
<tr>
<td>Convert</td>
<td>All outputs active, no FireWire capture.</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Video source</td>
</tr>
<tr>
<td>Playback / Playback only</td>
<td>Inputs disabled, playback from Premiere Pro.</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>V4HD video clock</td>
</tr>
<tr>
<td>Audio only</td>
<td>Video I/O is disabled. V4HD operates as a FireWire audio interface.</td>
<td>No</td>
<td>No</td>
<td>Audio only</td>
<td>Audio clock source (page 71)</td>
</tr>
<tr>
<td>Standalone video</td>
<td>V4HD is disconnected from the computer and operates as a standalone video converter and audio mixer.</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Video source</td>
</tr>
<tr>
<td>Standalone audio</td>
<td>V4HD is disconnected from the computer and operates as a standalone audio mixer only.</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Audio clock source (page 71)</td>
</tr>
</tbody>
</table>

Figure 5-2: Summary of V4HD modes.
Playback Only mode keeps the V4HD hardware from switching back and forth unnecessarily between Playback and Convert (or Capture) modes.

**Audio only**

In **Audio only** mode, all of the V4HD video features are disabled and the V4HD operates as a 24-channel FireWire audio interface, which provides three 8-channel banks of analog, AES/EBU and ADAT optical I/O. (The fourth bank, embedded audio, is disabled in this mode since there is no video signal in which the audio could be embedded.) To engage **Audio only** mode, go to the Setup tab in the MOTU Video console software (Figure 6-1 on page 41) and disable the **Enable Video** option (Figure 6-19 on page 48).

You must use Audio Only mode if you want to resolve the V4HD’s digital audio clock to an external source, such as word clock, ADAT optical or AES/EBU. For further information, see “Syncing digital audio devices” on page 31.

**Standalone**

To put the V4HD in **Standalone** mode, unplug its FireWire cable connection to the computer, or turn off the computer. Standalone mode is very similar to Convert mode: no video goes to FireWire and the computer because it is disconnected, but the currently selected video source is fed to all other V4HD video outputs.

In standalone mode, you can use the front panel LCD to put the V4HD into Audio only mode (see “AV Mode” on page 100). Doing so turns the V4HD into a standalone 24-channel, 12-bus audio mixer. You can control the mixer from the front panel LCD. See “CueMix Menu” on page 97.
MOTU Video console (Figure 6-1) is installed in your PC’s Program Files> MOTU directory and provides convenient access to all V4HD settings from your computer desktop.

Figure 6-1: MOTU Video console.
**SIGNAL PATH DIAGRAM**

The Signal Path Diagram (Figure 6-2, Figure 6-3) lets you view and control the V4HD’s hardware-based video conversion features and signal flow settings. The Signal path Diagram lets you pre-configure and store independent settings for five common operational scenarios:

- Convert and Capture
- 480 playback
- 576 playback
- 720 playback
- 1080 playback

The Signal Path Diagram shows one set of settings at a time, allowing you to pre-configure and save unique settings for each of the five situations listed above. In the case of the four playback formats, the settings you make for each format will go into effect when you play back material in that format from Premiere Pro.

In most situations, the Signal Path Diagram lets you access the settings for a mode, even when the hardware is not currently in that mode. Displaying the settings for a mode doesn’t put the V4HD in that mode. For information about controlling what mode the V4HD is in, see chapter 5, “V4HD Basics” (page 37).

**Signal path layout**

The signal path diagram proceeds from left to right, with the source menu on the left, destinations on the right, and controls for each format placed along the signal path in the form of informational blocks or menus that let you view and modify settings. The upper path represents the V4HD hardware’s HD signal path and the lower path represents the V4HD hardware’s SD signal path.

**Playback signal path**

To view the Playback Signal Path settings, put the V4HD in Playback only mode (as explained in chapter 5, “V4HD Basics”), or click the Playback tab (Figure 6-1). In either case, the signal path diagram shows the Playback Signal Path (Figure 6-2).
**Playback settings menu**

The Playback Settings menu (Figure 6-2) lets you choose one of four sets of playback settings to view in the signal path diagram. There are separate settings for 480, 576, 720 and 1080 playback (Figure 6-4). When you choose a format from this menu, the settings for the format are displayed in the Playback Signal Path diagram. When Premiere Pro is running, this menu becomes inactive and simply displays the Premiere Pro timeline format and frame rate.

![Playback formats](image)

![Playback frame rate](image)

Figure 6-4: The Playback Settings menu.

When you play back video from Premiere Pro, the V4HD hardware detects the video format being output by Premiere Pro and distributes it to the V4HD hardware HD and SD destinations according to the settings you’ve made for that format. Whenever playback starts, the MOTU Video console software automatically switches to the Playback tab to show the settings for the format being played.

**Playback frame rate**

Choose the desired playback frame rate (Figure 6-4) you wish to work with in the Playback Signal Path diagram. The frame rate you choose here should match what you intend to use in Premiere Pro, and it determines what other hardware settings you’ll see in the Playback Signal Path diagram, such as up or down conversion formats, pull-down insertion, etc.

**Convert/Capture signal path**

If the V4HD is not in Playback Only mode (as explained in chapter 5, “V4HD Basics”), click any other tab besides the Playback tab (Figure 6-1) to view the Conversion/Capture Signal Path settings in the signal path diagram (Figure 6-3). Unlike the four sets of playback settings, there is only one set of conversion/capture settings. Changing
Conversion/Capture settings in the signal path diagram changes these settings immediately in the hardware.

**Video Source menu**
The **Video Source menu** (Figure 6-3) is important because this is where you choose the video input from which the V4HD will convert and capture. Choose any SD or HD source (Figure 6-5), and the V4HD converts it to all output formats and sends it over Firewire to the computer.

When you choose a source, the V4HD can auto-detect the frame rate and format of the incoming video (see “Auto Detect Input Format” on page 48).

**Format Conversion menu**
The **Format Conversion** menu (Figure 6-3) lets you choose the formatting for SD to HD up conversion or HD to SD down conversion. The format conversion color bar diagram (Figure 6-3) provides a thumbnail illustrating the resulting formatting. The color bars represent the original source signal and the boxed boundary represents the destination frame.

**HD to SD down conversion formats**
When an HD source is chosen in the Video Source menu (Figure 6-5), the format conversion menu appears along the SD signal path, as demonstrated in Figure 6-3. The menu provides the following HD to SD down conversion formatting options:

- **Letterbox (HD to SD)**
  Letterboxing is the standard practice of conforming widescreen film images such as film or HD to an SD video frame while preserving the original aspect ratio. Since the SD video frame is more square than the widescreen frame, the resulting image has “black bars” or mattes above and below the image (Figure 6-7).

The **Letterbox** option (Figure 6-6) preserves the aspect ratio of the HD source signal while filling the SD frame edge to edge (left to right). Black bars are added to fill the unused portion of the frame above and below (Figure 6-7). No cropping occurs and the full image is preserved.

- **14:9 Letterbox (HD to SD)**
  With the **14:9 Letterbox** option (Figure 6-6), aspect ratio is preserved (Figure 6-8) and some cropping occurs on the left and right edge, but not as much as in Full Screen mode (explained below). In addition, the letterbox bars are smaller. In essence, this mode scales the image larger than letterbox mode, but not as much as Full Screen mode, with less left- and right-edge cropping than Full Screen mode and smaller letterbox bars.
Full Screen (HD to SD)
The Full Screen option (Figure 6-6) also preserves the aspect ratio of the HD image but scales it proportionally to fill the full height of the SD frame (Figure 6-9). As a result, the portions of the HD image that fall outside the frame (along the left-hand and right-hand edges) are cropped. But the full height of the SD frame is used.

Anamorphic (HD to SD)
The Anamorphic option (Figure 6-6) does not preserve the aspect ratio of the HD image. Instead, it scales the image to fill the full height of the SD frame, but it also distorts the HD image horizontally so it squeezes into the SD frame (Figure 6-10). As a result, the entire HD image is preserved, but it appears horizontally compressed. This option is good for SD material that will be displayed on a widescreen TV, where it can be horizontally expanded back to an aspect ratio that is close to the aspect ratio of the original HD image.

SD to HD up conversion formats
When an SD source is chosen from the Video Source menu (Figure 6-5), the Format Conversion menu appears in the HD signal path, as shown below in Figure 6-11:

The menu provides the following SD to HD up conversion formatting options:

- Pillar Box
- 14:9 Pillar Box
- Full Screen
- Anamorphic

Pillar Box (SD to HD)
Pillar box formatting is a method for conforming SD video to an HD video frame while preserving the original aspect ratio. Since the HD video frame is more rectangular than SD video, the resulting image has “black bars” or mattes on either side of the image (Figure 6-13).
The **Pillar Box** option (Figure 6-12) preserves the aspect ratio of the SD source signal while filling the HD frame top to bottom. Black bars are added to fill the unused portion of the frame on either side (Figure 6-13). No cropping occurs and the full image is preserved.

### 14:9 Pillar Box (SD to HD)

With the 14:9 **Pillar Box** option (Figure 6-12), aspect ratio is preserved (Figure 6-14) and some cropping occurs on the top and bottom edge, but not as much as in Full Screen mode (explained below). In addition, the pillar box bars are smaller. In essence, this mode scales the image larger than Pillar box mode, but not as much as Full Screen mode, with less top- and bottom-edge cropping than Full Screen mode and smaller pillar box bars.

### Anamorphic (SD to HD)

The **Anamorphic** option (Figure 6-12) does not preserve the aspect ratio of the SD image. Instead, it scales the image to fill the full width of the HD frame, but it also distorts the SD image vertically so that expands to fill the HD frame (Figure 6-16). As a result, the entire SD image is preserved, but it appears horizontally expanded.

### Full Screen (SD to HD)

The **Full Screen** option (Figure 6-12) preserves the aspect ratio of the SD image, but it scales it proportionally to fill the full width of the HD frame (Figure 6-15). As a result, the portions of the SD image that fall outside the frame (along the top and bottom edges) are cropped. But the full width of the HD frame is used.

### SD/HD output format

The **SD output format** and **HD output format** blocks in the signal path diagram (Figure 6-3) indicate the specific format and frame rate that the V4HD is currently converting and sending to its SD and HD outputs. If the “Auto Detect Input Format” option (page 48) is set to **Manual** or **Genlock**, these blocks turn into menus from which you can specify the format being captured and converted from the source currently chosen in the Video Source menu (Figure 6-3). When the “Auto Detect Input Format” is set to **Format and Genlock**, depending on the situation, these menus will let you choose the output format for the non-source path. For example, if you currently have an SD source, this menu will let you choose the HD output format.
SD output is disabled when the HD frame rate is set to 24, 30, or 60 (as opposed to 23.976, 29.97, or 59.94).

Destinations
The Destinations on the far right of the signal path diagram (Figure 6-3) display where the HD and SD video signals go.

HDMI/DVI
The HDMI/DVI menu (Figure 6-3) lets you choose the output format for the HDMI output on the rear panel of the V4HD. If you choose DVI, you’ll need an HDMI-to-DVI cable or adapter.

The V4HD’s HDMI/DVI output can send either the SD or HD video signal. Use the “HDMI Output Source” setting (page 51) in the Output tab to specify either SD or HD. If you choose HD, the HDMI/DVI block in the signal path diagram connects to the HD signal path, as shown in Figure 6-3. If you choose SD, it connects to the SD signal path, as shown in Figure 6-25.

FireWire
Your host software running on the computer is represented by the block labeled with the FireWire icon (Figure 6-3). Notice that this block can be fed by either the HD or the SD signal path, depending on the Preview Format setting (Figure 6-26 on page 52). This block is not present in the Playback Signal Path diagram (Figure 6-2), since the V4HD does not feed a signal to the computer in this mode.

The pull-down menu
Pull-down is a process used to convert 23.976 fps film footage to 29.97 interlaced video. Reverse pull-down, or pull-down removal, can be used to restore the original film frame rate. These processes involve the addition or removal of interlaced video fields. For a complete explanation, refer to the Premiere Pro User Manual.

Pull-down insertion is supported in the following cases:
- Converting any 23.976 fps HD signal to 480i29.97 (This can be done in any mode: capture, convert, or playback.)
- Playing back 480p23.976, converting to 480i29.97 and 23.976 fps HD (720p23.976, 1080p23.976 or 1080PsF 23.976)
- Playing back 1080p23.976, converting to 1080i29.97 and 480i29.97
- Playing back 720p23.976, converting to 720p59.94 and 480i29.97
- Playing back 1080p24, converting to 1080i30 (SD is disabled in this case.)
- Playing back 720p24, converting to 720p60 (SD is disabled in this case.)

Pull-down detection and removal
The V4HD automatically detects and removes pull-down in the following conversion situations:
- Convert 480i29.97 to 23.976 fps HD (720 or 1080)
- Convert 480i29.97 to 23.976 fps HD (720 or 1080) and capture as 480p23.976
If pull-down is detected in the source signal, and the “Detect Pull-down” option (page 55) is selected, the V4HD displays the cadence in the signal path display as shown in Figure 6-18:

**Manual**

Choose **Manual** to specify the format by hand from the HD and SD output format menus in the signal path diagram.

**Setup**

The **Setup** tab (Figure 6-19) has the following settings.

**Auto Detect Input Format**

The **Auto Detect Input Format** option (Figure 6-19) lets you choose the degree to which the V4HD will automatically detect the video format for the input currently chosen in the **Video Source** menu (Figure 6-3).

**Manual Refresh button**

When you choose **Manual** mode from the Auto Detect Input Format menu, the Manual Refresh button appears in the Setup tab (Figure 6-21).
Click this button to force the V4HD to relock to the incoming video signal. This may be necessary after restarting the signal, swapping cables, etc.

Genlock
The Genlock option causes the V4HD to automatically genlock to the incoming video signal, but you can still specify the video format, according to what makes sense, given the genlocked signal. For example, there is no way for the V4HD to differentiate 1080i29.97 input from 1080PsF29.97 input. The signals are identical but will be interpreted differently by the V4HD’s down converter, so in a case like this, you can choose Genlock and then specify the incoming format manually in the HD and SD Output Format menus (Figure 6-3), as explained in “SD/HD output format” on page 46.

Format and Genlock
The Format and Genlock option (Figure 6-19) causes the V4HD to fully detect both genlock and the video format for the current video source.

SDI Output Timecode Format
Use the SDI Output Timecode Format menu (Figure 6-19) to specify the form of embedded time code to include in the V4HD SDI output signal. Choices are LTC, VITC 1 and VITC 2.

480i Component Analog Format
The 480i Component Analog Format option lets you specify the voltage level standard for the V4HD’s SD component inputs and outputs when running at 480i (NTSC). Choices are: EBU N10, Sony Beta, Sony Beta Japan and Panasonic MII. Choose the format that best matches the device(s) connected to the SD component input and output.

FireWire 400 HQ

Timecode Source
The Timecode Source menu (Figure 6-19) lets you specify which time code source you would like the V4HD to resolve to: Sony 9-pin (via the RS-422 port), the LTC jack on the rear panel of the V4HD, SDI (embedded) time code from the SDI input currently chosen in the Video Source menu (Figure 6-3 on page 43), or SD VITC (vertical interval time code) from the currently chosen SD source input.

480i Setup
The 480i Setup option (Figure 6-19) lets you choose between USA (7.5%) and Japan (0.0%) for NTSC composite and S-video input and output.

Timecode Destination
The Timecode Destination menu (Figure 6-19) lets you specify the video destination for timecode generated or regenerated by the V4HD. You can choose None, SD VITC (vertical interval time code), SD-SDI or HD-SDI. For the SDI options, the time code is encoded as standard embedded time code in the chosen SDI stream. This setting also determines the time code format to be transmitted from the V4HD’s LTC output jack on the rear panel. For example, if you choose SD-SDI, then the LTC output will generate pull-down time code aligned to the SD outputs. This distinction is important, for instance, when converting 23.976
fps HD video to 29.97 fps SD video. In this case, this setting determines whether the LTC output consists of 30 frame or 24 frame timecode.

Enable Video
The Enable Video option (Figure 6-19) enables or disables all of the V4HD's video features. When they are disabled, the V4HD operates as a 24-channel audio interface and mixer, or as a stand-alone mixer. Disabling the video features also allows you to resolve the V4HD to another digital audio device via its word clock input, AES/EBU input or ADAT optical input. See “Syncing digital audio devices” on page 31.

Playback Only (disable inputs)
The Playback Only (disable inputs) option (Figure 6-19) lets you disable the video inputs on the V4HD. When this option is enabled, the FireWire capture portion of the signal path (Figure 6-3) disappears, as no capturing or converting is possible. This mode is useful at times during your workflow when you are playing back video from your host software (during editing, etc.) but you are not actively capturing or converting. For example, this mode is recommended when you have no video inputs connected to the V4HD.

OUTPUT
The Output tab (Figure 6-22) provides settings for the V4HD video outputs.

480i Broadcast Legalizer
Video with highly saturated colors may result in a composite signal which is too “hot” to broadcast. The 480i Broadcast Legalizer menu (Figure 6-22, Figure 6-23) controls the V4HD's SD Broadcast Legalizer module, which desaturates any overly saturated pixels to bring the composite signal within the specified limit. For example, selecting 120 IRE guarantees the output will never exceed 120 IRE units. Only pixels that exceed the chosen limit are affected and brought within range.

The Soft options provide a more gentle slope to the filter, adjusting pixels above and below the chosen limit to produce better results, but in the end still capping all pixels to the chosen limit.

Composite video consists of both a chroma and a luma component. The < 50 options further restrict V4HD composite output by ensuring that the chroma does not exceed 50 IRE units.

Figure 6-22: The Output tab settings.
576i Broadcast Legalizer

The 576i Broadcast Legalizer menu (Figure 6-22, Figure 6-24) controls limiting the PAL composite output in a similar manner as discussed above for NTSC composite output, except that the levels for PAL are expressed in millivolts (mV).

SD Component Output Color Mode

Choose either the RGB or YPbPr color space (Figure 6-22) for SD Component output.

HD Component Output Color Mode

Choose either the RGB or YPbPr color space (Figure 6-22) for HD Component output.

HDMI Output Source

The V4HD always outputs both SD and HD video signals, converting the currently chosen source as necessary to produce both formats simultaneously. The V4HD’s HDMI output jack can output either the HD or SD signal. Use the HDMI Output Source setting (Figure 6-22) to choose SD or HD for the HDMI output. For example, if you choose SD, the HDMI output destination in the signal path diagram connects to the SD path as shown below (Figure 6-25):
PREVIEW

The Preview tab (Figure 6-26) lets you preview the video signal being received from the currently selected input in the Video Source menu (Figure 6-3). Choose the desired Preview Format (SD or HD) from the menu provided. If up conversion or down conversion is being applied, the “Format Conversion menu” on page 44 determines how the signal is formatted within the preview frame.

If you don’t see the source video signal

If you have trouble getting the source video signal to appear in the preview frame, try checking the “Auto Detect Input Format” setting in the Setup tab (Figure 6-19) and make sure it is set to Format and Genlock. Also check the Genlock LED (Figure 6-1).

The Preview tab and Premiere Pro

When Premiere Pro is running, it takes over the V4HD hardware in regards to previewing. In this situation, the Preview window simply displays a message saying that previewing is unavailable. When you quit Premiere Pro, the Preview tab operates normally, as described above.

Figure 6-26: The Preview tab settings.
**PLAYBACK**

The Playback tab (Figure 6-27) provides settings that apply to video playback from Premiere Pro (as opposed to capturing). Therefore, these settings relate to the current settings in Premiere and its timeline.

**The playback signal path**

When you click the Playback tab, the signal path diagram displays settings for playback from Premiere Pro, as explained earlier in “Playback signal path” on page 42.

**Playback Clock Source**

In Capture or Convert modes, the V4HD resolves to the video signal being received from the currently chosen input in the Video Source menu (Figure 6-3 and Figure 6-5).

In Playback mode, you can specify the timing reference for the V4HD in the Playback Clock Source menu (Figure 6-27). Four choices are provided.

- **Internal**
  Choose Internal (Figure 6-28) to make the V4HD resolve to its own internal clock. This setting is best when you do not need to resolve the V4HD to house sync (blackburst).

- **REF in — Bi-level (SD)**
  Choose REF in — Bi-level (SD) (Figure 6-28) when you wish to resolve the V4HD to an SD clock source connected to its VIDEO REF input on the rear panel. Use this setting to resolve the V4HD to house sync (blackburst).

- **REF in — Tri-level (HD)**
  Choose REF in — Tri-level (HD) (Figure 6-28) when you wish to resolve the V4HD to an HD clock source connected to its VIDEO REF input on the rear panel.

- **Selected Input**
  Choose Selected Input (Figure 6-28) when you wish to resolve the V4HD to the video signal being received from the currently chosen input in the Video Source menu (Figure 6-3 and Figure 6-5), even though the V4HD is currently in Playback mode and you are not capturing or converting the source video signal.
Playback Timecode Offset
The Playback Timecode Offset options (Figure 6-27) let you specify the frame format and timecode offset for timecode generated by the V4HD during playback. Make sure these settings match their corresponding settings in your Premiere Pro project, so that the V4HD generates timecode that matches Premiere Pro’s time line.

Interlace Pause Mode / Interlaced Field When Paused
If you are working with an interlaced video format, the Interlace Pause Mode (Figure 6-27) lets you choose between viewing a full frame or individual fields when Premiere Pro parks on a frame. If you choose the Single Field option, the Interlaced Field When Paused options let you specify the video field you wish to see. When the Interlace Pause Mode option is set to Full Frame, the Field 1 and Field 2 options are grayed out. Clicking on these buttons will not bring the MOTU Video console application to the front, so you can switch between fields, or between Full Frame and Single Fields modes, while Premiere Pro is the front application.

CONVERT
The Convert tab (Figure 6-29) provides two settings for SD to HD up conversion during capture or playback.

Upconversion Deinterlacing
When an SD video signal is upconverted to HD, it must be deinterlaced (and, depending on the HD format you are working with, re-interlaced). The V4HD provides three different settings for deinterlacing to provide the best possible results for various types of video material. You can, of course, experiment with the three options to find which one produces the best-looking results.

Motion Adaptive Deinterlacing
As its name implies, the Motion Adaptive Deinterlacing option (Figure 6-30) provides good results for most standard interlaced SD video material, including material with a lot of vertical and horizontal motion in it. If the source footage is relatively static, you could also try the None/Weave option below.

None/Weave
The None/Weave option (Figure 6-30) is the simplest algorithm, with no processing or advanced frame/field detection. Instead, it “weaves” each pair of fields together, treating them as a progressive frame. This option is best for material that shouldn’t really be treated as interlaced, such as SD footage shot in non-standard, progressive recording modes, such as the “30P” mode found on some cameras.
Detect Pull-down
Use the Detect Pull-down option (Figure 6-30) if the source footage already has either 2:3 or 2:3:3:2 pull-down inserted (due to a telecine transfer, the “24p” record mode of some cameras, etc.) The V4HD will auto-detect the cadence of the pull-down and assemble frames accordingly.

Upconversion deinterlacing and 23.976 frame rates
The Upconversion Deinterlacing mode is ignored if the HD frame rate is 23.976. In this case, the V4HD attempts to detect and remove pull-down.

Upconversion Sharpness
Adjust Upconversion Sharpness (Figure 6-29) to further improve the deinterlaced HD image. This control determines the amount (in arbitrary units from 0.00 to 1.00) of an unsharp mask applied to the image while upconverting.

INPUT
The Input tab (Figure 6-31) provides several settings for adjusting the Brightness, Contrast and Hue of the incoming Composite or S-Video (SD) signal.

THE GENLOCK LED
The genlock LED (Figure 6-1) indicates when the V4HD has successfully genlocked to one of the following sources:

- the video signal being received from the currently chosen input in the Video Source menu (Figure 6-3 and Figure 6-5)
- the Playback Clock Source (Figure 6-27 and Figure 6-28)
- the Video REF input (see “Video sync connections” on page 29)

If the Auto Detect Input Format option (page 48) is set to Manual, the genlock LED will always be illuminated.

THE DEVICES MENU
The Devices menu provides a shortcut for launching the MOTU Audio Console application. If you have multiple MOTU video interfaces connected, it also lets you choose which interface you are currently controlling with the MOTU Video console software.
CHAPTER 7  Premiere Pro

OVERVIEW
The V4HD serves as a powerful video capture and playback device for Adobe Premiere Pro. Operation is straightforward and follows the general workflow prescribed by Premiere Pro for capture procedures and time line playback.

FAMILIARITY WITH PREMIERE PRO
This chapter assumes that you have a working knowledge of basic Premiere Pro operation.

BEFORE YOU LAUNCH PREMIERE PRO
Before you launch Premiere Pro, be sure to:

- Insert the V4HD Installer CD and run SetupVideo.exe.
- Connect the V4HD to the computer via a single FireWire connection and connect your video devices to it as explained in chapter 4, “Installing the V4HD Hardware” (page 21).
- Switch on the V4HD and run the MOTU Video console to make sure that installation has been successful. If MOTU Video console launches without any error messages, then Premiere Pro should successfully communicate with the V4HD.

Familiarity with Premiere Pro ........................................ 57
Before you launch Premiere Pro .................................... 57
Getting started ........................................................... 58
Project presets ........................................................... 58
V4HD video settings .................................................. 58
Video capture ............................................................ 60
Monitoring through the V4HD during capture ............ 62
Playback ................................................................. 62
Audio playback settings ............................................. 63
Hardware conversion during capture or playback .... 63
Time code ................................................................. 64
Device control .......................................................... 64
Export to tape ........................................................... 65
Batch capture ............................................................ 66
Supported video formats .............................................. 66
GETTING STARTED
You are now ready to run Premiere Pro.

1. Launch Premiere Pro.

2. When the Welcome screen appears, click New Project, select a V4HD preset from the Load Preset panel (Figure 7-1), name the project and click OK.

PROJECT PRESETS
The V4HD software installer provides the MOTU V4HD factory-supplied project presets shown in Figure 7-1. These presets are organized in directories by video format. Each preset is clearly named with a video frame format, raster size and frame rate. Choose the preset that most closely matches the settings you need. You can adjust settings further using the Custom Settings tab.

Custom settings
You can further adjust project settings or even create your own custom project presets to suit your workflow. Click the Custom Settings tab (Figure 7-2) to further configure your settings. Always be sure, however, to choose a V4HD preset from the Editing Mode menu. This ensures that you will be able to capture and play video via the V4HD hardware. For information about other custom settings, consult your Premiere Pro documentation.

V4HD VIDEO SETTINGS
Once the V4HD hardware has been configured by the Premiere Pro settings you made in the previous section, open the MOTU Video console application (Figure 6-1 on page 41) to view the...
V4HD’s hardware settings and make any adjustments, if necessary, as explained in the following sections.

**Capture settings**
For capture, click the Setup tab to view the Capture Signal Path (Figure 6-3 on page 43) and Setup tab settings (Figure 6-19 on page 48). In the Setup tab, make sure that the *Enable video* option is enabled and the *Playback only (disable inputs)* option is disabled. To make the V4HD automatically detect the format of the currently selected video input in the source menu, choose *Format and Genlock* from the *Auto Detect Input Format* menu. To manually specify the source video format, choose either *Manual or Genlock* and then choose the desired format from the HD/SD format menus (see “SD/HD output format” on page 46). If you will be up converting in the V4HD hardware while capturing, click the Convert tab (Figure 6-29 on page 54) and set the desired deinterlacing mode.

For details on other Capture settings, review chapter 6, “MOTU Video Console” (page 41).

**Playback settings**
Click the Playback tab to view the Playback Signal Path (Figure 6-2 on page 42) and Playback tab settings (Figure 6-27 on page 53).

In the Playback tab, make sure the *Playback Timecode Offset* and frame rate match your Premiere Pro sequence offset and frame rate. If you want Premiere Pro to resolve to an external sync source during playback, choose the desired source from the *Playback Clock Source* menu (Figure 6-28 on page 53); otherwise, leave it set to *Internal*. For
interlaced output from the V4HD, use the Interlace Pause Mode options (Figure 6-27) to determine what you’ll see when Premiere Pro is paused.

If you are at a point in your workflow where you are not capturing video, or if you have no video inputs connected to the V4HD, click the Setup tab and enable the Playback only (disable inputs) option Figure 6-19 on page 48.

For details on other playback settings, review chapter 6, “MOTU Video Console” (page 41).

VIDEO CAPTURE
Once you’ve made the appropriate settings in Premiere Pro and you’ve reviewed the capture settings in MOTU Video console, you are ready to capture video from the V4HD:

1 Make sure that the V4HD’s Playback Only option (Figure 6-19) in MOTU Video console is disabled. See “Playback Only (disable inputs)” on page 50.
2 In Premiere Pro, choose Capture from the File menu to open the Capture window (Figure 7-3).
3 Click the Settings tab and click the Edit button (Figure 7-3) to access the Capture settings (Figure 7-4).
4 Refer to the following sections for information about the Capture settings in Figure 7-4.
5 Click the Logging tab (Figure 7-3) and name the clip (Figure 7-5).

Figure 7-3: Capture window.
Be sure to name the clip before you begin capture to avoid potential issues during capture.

6 Click the Record button (Figure 7-3) to start capturing.

Video Input
Choose the desired video input on the V4HD from the Video Input menu (Figure 7-4). This is the physical input on the interface that you wish to capture from, and it is the same setting as the Source menu in MOTU Video console (Figure 6-3 on page 43). The installed V4HD factory presets use SDI as the default input for both video and audio capture. You may change these settings in the Configure Capture Settings window.

Frame rate
Choose the desired video frame rate from the Frame Rate menu (Figure 7-4). Make sure this setting matches your project frame rate.

Audio Input Source
From the Audio Input Source menu (Figure 7-7), choose the audio bank that you wish to capture. Only one bank can be chosen for capture at a time.
Audio Channels
From the Audio channels menu (Figure 7-8), choose the number of channels you wish to capture from the audio bank chosen as the Audio Input Source. Mono captures channel 1, Stereo captures channels 1-2 and 5.1 Surround captures channels 1-6.

Audio bit depth
The V4HD supports both 16-bit and 24-bit audio capture and playback. Choose the desired format from the Audio bit depth menu (Figure 7-4).

Audio sample rate convert (capture)
If you wish to convert digital audio input from one sample rate to another during capture, choose the desired setting from the Sample Rate Convert menu (Figure 7-9). This is the same setting found in the MOTU Audio Console. See “Sample Rate Convert” on page 73.

MONITORING THROUGH THE V4HD DURING CAPTURE
The V4HD has extensive “CueMix” audio monitoring features, including delay compensation, so you are better off monitoring both audio and video through the V4HD hardware. See the following:

- chapter 4, “Installing the V4HD Hardware” (page 21) for information about the necessary video and audio connections
- chapter 9, “CueMix FX” (page 77) for complete information about controlling CueMix monitoring
- “Sync CueMix audio with video output” on page 75 and “Additional Audio Delay” on page 74 for details about managing audio latency for CueMix monitoring

PLAYBACK
To play back your Premiere Pro project and view it on any monitor or other device connected to the V4HD’s video outputs, simply start playback.

Native versus non-native clips
Clips that match the native video format of your Premiere Pro project and don’t require any further rendering will play back. Clips that don’t match the native video format of your Premiere Pro project will appear in the timeline with the red render bar. For example, if you place an HDV clip in the timeline, it will appear with a red render bar. In this case, it will likely not play smoothly, unless your computer is fast enough to transcode it in real time during playback. For smooth playback, render the clip to convert it to the native video format for your project.

Playback only mode
If you are at a point in your project workflow where you are no longer capturing clips, you might want to consider putting the V4HD in Playback Only mode (Figure 6-19) in MOTU Video console. See “Playback Only (disable inputs)” on page 50.
this mode, you can either run the V4HD under its own internal clock, or you can resolve the V4HD to an external clock source. See “Playback Clock Source” on page 53. Be sure to review the other settings in the Playback tab (page 53).

**AUDIO PLAYBACK SETTINGS**

To access the audio playback settings, choose *Project menu>Project Settings* and then click *Audio Playback Settings*.

![Figure 7-10: Audio playback settings.](image)

You can verify the V4HD’s audio settings using MOTU Audio Console (Figure 8-1 on page 70).

**Audio Output Destination**

From the Audio Output Destination menu (Figure 7-11), choose the audio bank that you wish to play back to. Only one bank can be chosen for playback at a time.

![Audio Output Destination](image)

**Audio sample rate convert (playback)**

If you wish to convert digital audio output from one sample rate to another during playback, choose the desired setting from the Sample Rate Convert menu (Figure 7-12). This is the same setting found in the MOTU Audio Console. See “Sample Rate Convert” on page 73.

![Audio Sample Rate Converter](image)

**HARDWARE CONVERSION DURING CAPTURE OR PLAYBACK**

The V4HD provides hardware-based conversion features, which you can employ during capture or playback in Premiere Pro. Here are a few examples:

![Figure 7-13: An example of hardware conversion during playback.](image)
During video capture, you could up-convert SD to HD in the V4HD hardware and then capture it in Premiere Pro as HD. Or you could down-convert HD to SD and capture as SD.

If you are capturing or playing back 23.976 fps source material, you could insert pull-down to 29.97 during capture or playback.

As demonstrated below in Figure 7-13, you could play back 480p 23.976 material from Premiere Pro and view it on SD monitors with pull-down inserted by the V4HD hardware on output. At the same time, you could also be converting it to 720p or 1080p 23.976 with 14:9 pillar box formatting.

These are just a few examples. There are hundreds of possible conversion scenarios. Here is a summary of where to manage conversion settings:

**Hardware conversion during...**  |  **V4HD settings**  
--- | ---  
Playback | Playback Signal Path (Figure 6-2) and Convert tab (Figure 6-29)  
Capture | Convert/Capture Signal Path (Figure 6-3) and Convert tab (Figure 6-29)  

**Supported conversions**  
In general, the menus in the Playback and Capture Signal Path diagrams provide all applicable settings that are supported for any given conversion scenario. Again, hundreds of possible conversion scenarios are supported. Here is a brief summary of the forms of real-time, hardware conversion supported (note that they can often be combined, too, where applicable):

- SD to HD up conversion (from 480 or 576 to 720 or 1080)
- HD to SD down conversion (from 720 or 1080 to 480 or 576)
- Up/down conversion reformatting (letterbox, pillar box, full screen, anamorphic, etc.)
- 2:3 or 2:3:3:2 pull-down insertion or removal
- Deinterlacing and reinterlacing

**Conversions that are not supported**  
If the menus in the Playback Signal Path and Capture Signal Path diagrams don’t provide the format you are looking for, it means that this form of conversion either doesn’t apply, or it is not supported by the V4HD video conversion hardware. For these forms of conversion, summarized below, use Premiere Pro or other video software to perform off line transcoding on the computer:

- HD to HD cross conversion — use transcoding to convert 720 to 1080 or vice versa
- Frame rate conversion — use transcoding to convert 29.97 fps to 30 fps (or vice versa), 23.976 fps to 24 fps, 59.94 fps to 60 fps, etc.
- Conversion from NTSC to PAL (or vice versa)

**TIME CODE**  
To lock Premiere Pro to time code during capture, go to the Setup tab (Figure 6-19 on page 48) in MOTU Video console and choose the Timecode Source (page 49).  

To configure the time code format being output by the V4HD hardware while Premiere Pro is playing back, go to the Playback tab (Figure 6-27 on page 53) in MOTU Video console and choose the Playback Clock Source (page 53). Also check the Playback Timecode Offset setting (page 54).

**DEVICE CONTROL**  
To configure V4HD RS-422 (Sony 9-pin) device control in Premiere Pro:

1. Connect an RS-422 cable from V4HD to the video deck or other machine control device.

2. Make sure the video deck is configured properly for remote operation via RS-422 machine control.
3 In MOTU Video console, choose Sony 9-Pin from the Timecode Source menu (Figure 6-19), which is found in the Setup tab.

4 Back in Premiere Pro, choose Edit menu> Preferences> Device Control and choose MOTU RS-422 from the Devices menu.

You can now use Premiere Pro's transport features to control your deck. Consult the Premiere Pro documentation for complete information about using machine control.

**EXPORT TO TAPE**
The V4HD provides an Export to Tape feature. This allows you to lay back material in your Premiere Pro timeline to a tape deck equipped with RS-422 device (machine) control support.

**Setting up device control**
Before using the V4HD's Export to Tape feature, you must first connect your tape deck to the V4HD's RS-422 machine control port to establish device control, as described in the previous section.

**Exporting to tape**
To export to tape:

1 Select a work area in your project timeline.

2 To access the Export to Tape settings (Figure 7-14), choose File menu> Export> Export to Tape.

3 Choose the desired Export Mode (see explanations below) and specify the insert time in the time code field provided (Figure 7-14).

4 Click the Export button (Figure 7-14) to begin the export operation.

Three Export to Tape modes are provided: **Insert**, **Assemble** and **Preview**.

**Insert**
*Insert* mode records the current Sequence Work Area to tape, replacing any existing video and audio on the tape. Because time code and control track are not replaced, this mode keeps the tape playing at the proper speed, resulting in a smooth transition at the In and Out points.

**Assemble**
*Assemble* mode records the current Sequence Work Area to tape, replacing all existing video, audio, time code and control track information on the tape. Because of the potential discrepancy between the timing of the newly recorded signal and the original signal on tape, the Out point transition may not be as smooth as Insert mode.

**Preview**
*Preview* mode previews the Sequence Work Area without actually recording to tape.
**BATCH CAPTURE**
The V4HD supports Premiere Pro’s Batch Capture feature, as follows:

1. In the Capture panel, use the *Set In* and *Set Out* buttons (Figure 7-15) to specify the desired log region.

![Figure 7-15: Logging clips.](image)

2. Click the *Log Clip* button (Figure 7-15) to log the clip you specified, and name the clip when prompted.

3. When you are ready to begin, select all logged clips in the Project panel.

4. Choose *File menu > Batch Capture*.

5. Follow the on-screen instructions.

For more information about Batch Capture, refer to the Adobe Premiere Pro CS3 user guide.

**SUPPORTED VIDEO FORMATS**
The V4HD can play back the following video formats from Premiere Pro:

**SD**
- Uncompressed 8-bit and 10-bit at 480p23.976, 480i29.97, 486i29.97 and 576i25
- DVCPro and DVCPro 50 at 480p23.976, 480i29.97 and 576i25

Note: the V4HD supports 480p23.976 SD capture and playback with hardware pull-down insertion/removal.

**HD**
- DVCPro HD 720p at 23.976, 24, 25, 29.97, 30, 50, 59.94 and 60
- DVCPro HD 1080i50 (1440 x 1080 raster) and 1080i60 (1280 x 1080 raster) at all 1080 frame rates listed on page 105.

The V4HD can capture and play back 1080i50 at 30 fps, which provides better resolution (1440 pixels wide) than 1080i60 (1280 pixels wide). However, 30 fps files recorded in the 1080i50 format cannot be recorded or played by other DVCPro HD devices, such as a DVCPro HD compatible video deck or camera.
Part 3

Audio Operation
CHAPTER 8  MOTU Audio Console

OVERVIEW
MOTU Audio Console gives you access to basic V4HD audio settings, such as sample rate, clock source, optical format and more.

Accessing MOTU Audio Console ........................................ 69
‘General’ tab Settings ...................................................... 70
Sample Rate ................................................................. 70
Clock Source ................................................................. 71
Samples Per Buffer ......................................................... 72
Wave support for legacy (MME) software ......................... 72
‘V4HD’ tab settings ........................................................ 73
Phones ........................................................................... 73
Analog Input/Output ....................................................... 73
AES/EBU Input/Output .................................................... 73
ADAT Optical Input/Output ............................................. 73
SDI Input and SDI/HDMI Output ..................................... 73
Sample Rate Convert ...................................................... 73
Additional Audio Delay .................................................. 74
Programmable Meters .................................................... 75
Word Out ................................................................. 75
Sync CueMix audio with video output .............................. 75

ACCESSING MOTU AUDIO CONSOLE
There are several ways to access MOTU Audio Console settings:

■ From the Windows Start menu, choose Programs>MOTU>MOTU Audio Console

■ From the front panel LCD as explained in chapter 12, “Front Panel LCD Programming” (page 93).
V4HD tab settings
The V4HD tab (Figure 8-1) provides settings that apply to a specific V4HD interface. If you have MOTU audio interfaces connected to your computer in addition to the V4HD, you’ll see a separate tab for each interface.

‘GENERAL’ TAB SETTINGS

Sample Rate
Choose the desired Sample Rate for recording and playback. The V4HD can operate at 44.1 (the standard rate for compact disc audio), 48, 88.2, 96, 176.4 or 192 kHz. Make absolutely sure that all of the devices connected digitally to the V4HD match the V4HD’s sample rate.

Figure 8-1: MOTU Audio Console gives you access to all of the audio settings in the V4HD hardware.
Mismatched sample rates cause distortion and crackling. If you hear this sort of thing, check the sample rate settings in your hardware and here in MOTU Audio Console.

Operation at 4x sample rates (176.4 or 192kHz)
At the 4x sample rates (176.4 or 192kHz), operation of the V4HD audio features is restricted, due to the higher audio bandwidth demands, as follows:

- The V4HD provides 8 channels of analog input and 8 channels of analog output, simultaneously.
- Only one 8-channel digital input or output bank can be used, with sample rate conversion applied, because the digital I/O banks only operate up to 96 kHz. With sample rate conversion, you can either capture or play back digital audio via ADAT optical, AES/EBU, embedded SDI or embedded HDMI out at any sample rate from 44.1 kHz to 96 kHz.
- The headphone output is disabled.

Clock Source
The Clock Source determines what the V4HD will use as its time base for audio. The following sections briefly discuss each clock source setting.

Video Clock
When video is enabled (see “Enable Video” on page 50), the V4HD audio clock slaves to video, and this is the only choice in the Clock Source menu.

Internal
When video is disabled (see “Enable Video” on page 50), use the Internal setting when you want the V4HD to operate under its own digital audio clock. For example, you may be in a situation where all you are doing is playing audio from Premiere Pro or audio software on the computer. In a situation like this, you most often don’t need to reference an external clock of any kind.

ADAT optical
When video is disabled (see “Enable Video” on page 50), the ADAT optical clock source setting refers to the clock provided by the V4HD’s optical input, when it is connected to an ADAT optical device. This setting can be used to slave the V4HD directly to the optical input connection. In this scenario, the ADAT Optical clock source setting lets you slave the V4HD to the other device via its digital connection to the V4HD.

The V4HD has two pairs of optical connectors: a main pair (for 8-channel operation at 44.1 or 48 kHz) and an auxiliary pair (for channels 5–8 at 88.2 or 96 kHz). In ADAT optical clock mode, the V4HD always resolves to the optical input in the main pair, even during 88.2 or 96 kHz operation. So be sure to connect the ADAT optical clock master to the optical input in the main input connector.

If the ADAT Optical setting does not appear in the menu, it means that the V4HD’s optical input is currently disabled. Choose Enabled from the ADAT input menu (Figure 8-1 on page 70).

For further details about this setting, see “Syncing digital audio devices” on page 31.

Word Clock In
When video is disabled (see “Enable Video” on page 50), the Word Clock In clock source setting refers to the Word Clock In BNC connector on the V4HD rear panel. Choosing this setting allows the V4HD to slave to an external word clock source, such as the word clock output from a digital mixer.

AES/EBU
The AES/EBU clock source settings refer to the AES/EBU input pairs on the V4HD. This setting allows the V4HD to slave to another device connected to one of the V4HD’s four AES/EBU input pairs when video is disabled (see “Enable Video” on page 50).
Use this setting whenever you are recording input from a DAT deck or other AES/EBU audio device into the V4HD. It is not necessary in the opposite direction (when you are transferring from the V4HD to the DAT machine).

If the AES/EBU settings do not appear in the menu, it means that the V4HD’s AES/EBU input bank is currently disabled. Choose Enabled from the AES/EBU input menu (Figure 8-1 on page 70).

For further details about this setting, see “Syncing digital audio devices” on page 31.

**SMPTÉ**
When video is disabled (see “Enable Video” on page 50), choose the SMPTÉ clock source setting to resolve the V4HD directly to SMPTÉ time code (LTC) being received via the LTC input. For details, see chapter 10, “MOTU SMPTÉ Console” (page 85).

**Samples Per Buffer**
The Samples Per Buffer setting lets you reduce the delay you hear when patching live audio through your host software. For example, you might have a live microphone input that you would like to run through a reverb plug-in that you are running in your host software. When doing so, you may hear or feel some “sponginess” (delay) between the source and the processed signal. If so, don’t worry. This effect only affects what you hear: it is not present in what is actually recorded.

You can use Samples Per Buffer setting to reduce this monitoring delay—and even make it completely inaudible.

☛ If you don’t need to process an incoming live signal with software plug-ins, you can monitor the signal with no delay at all using CueMix FX, which routes the signal directly to your speakers via hardware. For details, see chapter 9, “CueMix FX” (page 77).

Adjusting the Samples Per Buffer setting impacts the following things:

- The strain on your computer’s CPU
- The delay you hear when routing a live signal through your host software
- How responsive the transport controls are in your host software

This setting presents you with a trade-off between the processing power of your computer and the delay of live audio as it is being processed by plug-ins. If you reduce the Samples Per Buffer, you reduce patch thru latency, but significantly increase the overall processing load on your computer, leaving less CPU bandwidth for things like real-time effects processing or rendering. On the other hand, if you increase the Samples Per Buffer, you reduce the load on your computer, freeing up bandwidth for effects, mixing and other real-time operations. But don’t set the Samples Per Buffer too low, or it may cause distortion in your audio.

If you don’t run audio through your host software (for processing, etc.), leave this setting at its default value of 1024 samples. If you do, try settings of 256 samples or less, if your computer seems to be able to handle them. If your host audio software has a processor meter, check it. If it starts getting maxed out, or if the computer seems sluggish, raise the Samples Per Buffer until performance returns to normal.

**Monitoring live inputs through the V4HD hardware**
As mentioned earlier, CueMix FX allows you to monitor dry, unprocessed live inputs with no delay at all. For complete details, see chapter 9, “CueMix FX” (page 77).

**Wave support for legacy (MME) software**
Windows only exposes the first two channels of a multi-channel WDM audio stream to applications which use the legacy (MME) multimedia interface.
The Enable full Wave support for legacy (MME) software (less efficient) option forces the V4HD multimedia driver to expose all channels as stereo pairs, providing full MME support.

If your host audio software does not directly support WDM audio and instead only supports legacy MME drivers, use this option to access multiple V4HD input and output channels.

If your host audio software does directly support WDM audio, leave this option unchecked for optimal performance.

This option is only available when the multimedia driver has been installed, and it defaults to being not checked.

‘V4HD’ TAB SETTINGS

Phones
The Phones setting (Figure 8-1) lets you choose what you will hear from the headphone jack. For example, choose Analog 1-2 if you'd like the headphone output to match the analog outputs 1 and 2.

Analog Input/Output
The Analog Input/Output menus (Figure 8-1) let you enable or disable the 8-channel analog bank. Enable a bank to make it available to Premiere Pro or the V4HD’s CueMix monitor mixer for audio input or output. Disable it if you are not using it to conserve FireWire bus bandwidth for video and other data. Note that input and output can be enabled or disabled independently.

AES/EBU Input/Output
The AES/EBU Input/Output menus (Figure 8-1) let you enable or disable the 8-channel bank of AES/EBU digital audio I/O, as described above for the analog banks.

ADAT Optical Input/Output
The ADAT Input/Output menus (Figure 8-1) let you enable or disable the 8-channel bank of ADAT optical digital audio I/O, as described above for the analog banks.

SDI Input and SDI/HDMI Output
These two menus (Figure 8-1) let you enable or disable the 8-channel bank of embedded digital audio I/O, as described above for the analog banks.

Sample Rate Convert
The Sample Rate Convert menu (Figure 8-1) lets you control the V4HD’s sample rate conversion. Sample rate conversion can be applied to any 8-channel digital input or output bank, as explained below. The options in the menu change, depending on the V4HD’s current Sample Rate setting (page 70). For example, if the V4HD is currently set to 192 kHz, you’ll see “x 4” and “÷ 4” settings that don’t apply to the lower sample rates.

When rate conversion is applied to a bank, the bank’s rate conversion LED in the AUDIO STATUS section of the V4HD front panel (src) indicate that rate conversion is occurring.

Figure 8-2: The Sample Rate Convert menu gives you access to a variety of input and output clock options.

None
No sample rate conversion occurs. Digital input and output match the sample rate of the V4HD’s system clock.
AES/EBU In
The AES/EBU input locks to the sample rate of the input signal (whatever it happens to be) and converts it to the V4HD system clock rate.

\( \times 2 / \div 2 \)
Choose one of these sample rate conversion options when the rate for the chosen digital I/O bank needs to be twice the V4HD system clock rate or half the system clock rate. Either way, the digital I/O bank remains resolved to the V4HD system clock. For further details about this option, see “Syncing digital audio devices” on page 31.

\( \times 4 / \div 4 \)
Choose one of these sample rate conversion options when the rate for the chosen digital I/O bank needs to be four times the V4HD system clock rate or one quarter of the system clock rate. Either way, the digital I/O bank remains resolved to the V4HD system clock.

ADAT In 44.1/48 versus ADAT In 88.2/96
The V4HD provides two sets of ADAT optical digital I/O connectors, which together provide 8 channels at 44.1 or 48 kHz or 8 channels at 88.2 or 96 kHz. These options let you specify the sample rate being received by the V4HD on its optical input(s), from the other optical device. The received signal will then be sample rate converted to the V4HD’s system clock rate, which can be any supported rate, even 176.4 or 192 kHz.

Additional Audio Delay
The Additional Audio Delay option (Figure 8-1) lets you add a certain amount of delay, specified in fractions of a video frame, to the V4HD’s audio output.

The main purpose for this feature is to allow you to compensate for any inherent delay in a video monitor connected to the V4HD. For example, LCD displays often have a small delay in them — from the time they receive a video frame to the time at which they actually display it on their screen. Depending on how you are monitoring the accompanying audio signal, the audio will likely not have this same delay. As a result, the audio will be heard slightly ahead of the delayed video signal. This option lets you delay the audio signal by the same amount as the video display, so that audio and video are properly aligned with one another.

This option affects audio passing through the V4HD in two scenarios:
- Playback from Premiere Pro
- V4HD CueMix monitoring

Playback from Premiere Pro
The Additional Audio Delay option can be applied to audio being played back from Premiere Pro to align it to Premiere Pro’s video output.

For example, let’s say you are viewing Premiere Pro output on a plasma monitor connected to one of the video outputs on the V4HD. This plasma monitor has an inherent one-frame delay (from the time it receives a frame to the time it displays it). In addition, you are listening to Premiere Pro’s audio output — in 5.1 surround — via studio monitors connected to the V4HD’s analog audio outputs. Even though audio and video depart the V4HD outputs completely in sync with one another, the image on the plasma will be running one frame behind the audio you hear from the surround monitors. Use the Additional Audio Delay option (Figure 8-1) to delay the V4HD’s audio output by one frame to match the image on the plasma.

V4HD CueMix monitoring
The Sync CueMix audio with video output option (shown in Figure 8-1 and described below) ensures that audio and video remain perfectly in sync with each other when they pass through the V4HD from its inputs to its outputs. However, you may still need to compensate for the inherent video signal delay in external devices connected to the V4HD.
Therefore, when the **Sync CueMix audio with video output** option is checked, the **Additional Audio Delay** option can be applied for exactly that purpose.

For example, let’s say you are capturing some SD footage from a camcorder connected to a V4HD SD video input, and you are monitoring it on an HD plasma monitor connected to an HD video output on the V4HD. This plasma monitor has an inherent one-frame delay (from the time it receives a frame to the time it displays it). In addition, the camcorder stereo audio output is connected to a pair of V4HD audio inputs, and you are listening to the camcorder’s audio output via studio monitors connected to the V4HD’s analog audio outputs. Even though audio and video depart the V4HD outputs completely in sync with one another, the image on the plasma will be running one frame behind the audio you hear from the studio monitors. Use the **Additional Audio Delay** option (Figure 8-1) to delay the V4HD’s audio output by one frame to match the image on the plasma.

### Programmable Meters

This option lets you choose which bank you wish to monitor with the eight programmable meters on the V4HD front panel. Choices are: analog out (analog in has its own dedicated bank of meters), ADAT Optical in/out, AES/EBU in/out, SDI in and SDI/HDMI out.

### Word Out

The **Word Out** menu (Figure 8-1) appears when the V4HD is operating at a 2x sample rate (88.2 or 96kHz) or 4x sample rate (176.4 or 192kHz). This menu lets you set the word clock output either to match the current sample rate (**System Clock**) or force it to the corresponding 1x rate (either 44.1 or 48kHz). For example, if the V4HD were operating at 176.4kHz, choosing the **Force 44.1/48kHz** option would produce word clock output at 44.1kHz.

---

**Sync CueMix audio with video output**

When the V4HD passes video and audio signal from its inputs to its outputs, there is a small delay in the video signal, while it is being processed and converted. Audio has almost no delay at all (less than a millisecond), which means that it will play a little bit ahead of the video signal. When you check the **Sync CueMix audio with video output** option (Figure 8-1), the V4HD precisely calculates the difference in the two signals (down to one audio sample) and delays the audio by exactly the correct number of samples to bring the audio signal back in sync with video when the two signals leave the V4HD outputs.

So, if the V4HD’s CueMix audio doesn’t sound in sync with the current video signal being monitored, try checking this option. If it still doesn’t seem in sync, the most likely culprit is an inherent delay in your video monitor. The V4HD allows you to further compensate for external delay such as this. See “**Additional Audio Delay**” on page 74.
CHAPTER 9  

CueMix FX

OVERVIEW
CueMix FX provides access to the flexible audio mixing and monitoring features of the V4HD, which are fully functional under video operation (capture, convert and playback) and the V4HD’s audio only mode.

CueMix lets you route any combination of audio inputs to any stereo output pair. CueMix allows you to set up a separate mix configuration for every stereo output pair on the V4HD — a total of 16 stereo buses (or 4 stereo buses at 176.4 or 192 kHz). You can also save and load mix configurations.

CueMix monitoring can be set up to support your work in Premiere Pro, or it can be set up independently of Premiere Pro.

Figure 9-1: CueMix FX is a virtual mixer that gives you control over the V4HD’s on-board mixing features.
CUEMIX MONITORING BENEFITS

CueMix FX provides several major benefits to your video post-production workflow:

- CueMix has no buffer latency. Thanks to the V4HD's hardware-based mixing, CueMix provides the same throughput performance as a digital mixer, so you can monitor audio as well as video during video capture.
- CueMix imposes absolutely no processor drain on the computer's CPU.
- CueMix routing can be maintained independently of individual software applications or projects. So you can use it even when you are not working in Premiere Pro.

CUEMIX FX INSTALLATION

CueMix FX is installed with the rest of your V4HD software.

CUEMIX FX BASIC OPERATION

The CueMix FX is simple to operate, once you know these basic concepts.

A separate mix for each output pair

CueMix provides a separate mix bus for every physical audio output pair on the V4HD — a total of 16 stereo buses (or 4 stereo busses at 176.4 or 192 kHz). Each mix can have any number of inputs mixed down to the output pair. For example, you could send your camera's stereo audio output to the V4HD headphones while mixing eight digital inputs to analog outputs 1-2 for monitoring on speakers.

Many inputs to one output pair

It might be useful to think of each mix as some number of inputs all mixed down to a stereo output pair. CueMix FX lets you choose which inputs to include in the mix, and it lets you specify the level and pan for each input being fed into the mix.

Viewing one mix at a time

CueMix FX displays one mix at a time. To select which mix you are viewing, choose the desired mix bus from the Mix bus menu (Figure 9-1). Double-click the name to change it.

Each mix is completely independent

Each mix has its own settings. Settings in one mix will not affect another. For example, if an input is used in one mix, it will still be available in other mixes. In addition, inputs can have a different volume, pan, mute and solo setting in each mix.

Widening the CueMix FX window

To view more input faders at once, drag the right-hand edge of the window to the right.

WORKING WITH A MIX

Each mix has the following components:

- A stereo output with master fader
- Name
- Master mute (to enable/disable the entire mix)
- Any number of mono or stereo inputs
- Pan, volume, mute and solo for each input

Viewing a mix

To view a mix, choose it from the Mix bus menu (Figure 9-1). The menu shows all mixes by name, followed by the V4HD output pair that it corresponds to.

Naming a mix

Click the mix name to edit its text.

Master fader

The master fader (Figure 9-1) controls the overall level of the mix (its volume on its stereo output). Use the individual input faders to the left to control individual input levels.
**Master mute**
The master mute button (Figure 9-1) temporarily disables (silences) the mix.

**Output level meter**
The Output level meter (Figure 9-1) shows you the output for the mix's physical output, which may include audio from your host audio software. The clip indicators clear themselves after a few seconds.

**Input section**
The channel strips to the left of the master fader represent each input in your V4HD. Use the input scroll bar (Figure 9-1) to view additional inputs.

**Mono/stereo pairing**
Click the Mono button (Figure 9-1) if you would like an input to be treated as a mono channel. If you would like to work with it as one channel of a linked stereo pair, click the Stereo button. Inputs are grouped in odd/even pairs (Analog 1-2, 3-4, etc.) Stereo pairs appear as a single channel strip in the CueMix FX mixer.

**Input pan**
The input pan knob (Figure 9-1) pans the input across the bus stereo outputs. If the input itself is grouped as a stereo pair, two forms of panning control are provided:

**Balance**
*Balance* works like the balance knob on some radios: turn it left and the right channel dims, turn it right and left channel dims. But the left channel always stays left and the right channel stays right.

**Width**
*Width* spreads the left and right channels across the stereo image, depending on the knob position. Minimum value (turning the pan knob all the way down) maintains the original stereo image: the left channel goes entirely left and right goes entirely right, without attenuation. The maximum value (turning the knob all the way up) inverts the signal, where the left channel goes all the way to the right and vice versa. In between, the left out is a mixture of the left input and some of the right input (and vice-versa) with the effect of narrowing the field. At zero, both the left and right outputs are an equal mixture of left and right.

**Input mute/solo**
To add an input to a mix, or remove it, click its MUTE button (Figure 9-1). To solo it, use its SOLO button. To toggle these buttons for a stereo pair, hold down the control key while clicking either channel. The Solo indicator LED (Figure 9-1) lights up when any input is soloed (including inputs that may currently be scrolled off-screen).

**Input fader**
Use the input fader (Figure 9-1) to adjust the level for the input in the mix. Note that an input can have different level, pan, mute and solo settings for different mixes. Input channel level meters are post-fader.

**SHORTCUTS**
Hold down the following modifier keys as shortcuts:

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift key</td>
<td>Applies your action to all inputs in the mix.</td>
</tr>
<tr>
<td>Shift-Alt</td>
<td>Applies your action to all inputs and mixes.</td>
</tr>
<tr>
<td>Control key</td>
<td>Applies your action to the stereo input pair.</td>
</tr>
<tr>
<td>Alt key</td>
<td>Applies your action to all busses.</td>
</tr>
<tr>
<td>Double-click</td>
<td>Returns the control to its default value (pan center, unity gain, etc.)</td>
</tr>
</tbody>
</table>

**MESSAGE CENTER**
The Message Center displays fly-over help for items in the CueMix FX window.

**SOLO LIGHT**
The Solo light (Figure 9-1) illuminates when any input in the current (active) mix bus is soloed (even if it is currently scrolled off-screen).
TALKBACK AND LISTENBACK
CueMix FX provides Talkback and Listenback buttons. Talkback allows an engineer in the control room to temporarily dim all audio and talk to musicians in the live room. Conversely, Listenback allows talent to talk to the control room.

Hardware setup
Figure 9-2 below shows a typical hardware setup for Talkback and Listenback. For Talkback, set up a dedicated mic (with a preamp) in your control room and connect it to an input on the V4HD. For Listenback, set up a dedicated listenback mic in the live room for the talent and connect it to another mic input. For talkback output, set up a headphone distribution amp or set of speakers in the live room, and connect it to the V4HD’s analog out 7-8, as demonstrated below in Figure 9-2.

Talkback / Listenback mic input
Choose the audio input to which your Talkback and/or Listenback mic is connected, as shown below:

Talkback / Listenback monitor dim
Use the Talk/Listen dim knobs (Figure 9-3) to set the amount of attenuation you would like to apply to all other audio signals (besides the talkback/listenback volume) when Talkback and/or Listenback is engaged. To completely silence all other CueMix audio, turn them all the way down. Audio playing back from disk (your host software) is not affected.

Talk / Listen signal routing
Click the Talk/Listen routing button (Figure 9-3) to open the routing dialog (Figure 9-4). Check the boxes next to the outputs on which you’d like to hear the Talkback mic and/or Listenback mic. For example, as demonstrated in the diagram in Figure 9-2, to hear the Talkback mic on the headphones in the live room, check the Analog 7-8 check box in the Talkback Outputs column as demonstrated in Figure 9-4. To hear the Listenback mic on the main monitors in the control room, check the Analog 1-2 check box in the Listenback Outputs column, also demonstrated in Figure 9-4.
Engaging/disengaging Talkback and Listenback
To engage Talkback or Listenback, press on the Talk or Listen buttons (Figure 9-3) and then release to disengage. Talkback and/or Listenback is engaged for as long as you hold down the mouse button. Alt-click to make the buttons “sticky” (stay engaged until you click them again — so you don’t have to hold down the mouse). Or use the Talkback menu items.

If you would like to engage both Talkback and Listenback at the same time, enable the Link button (Figure 9-3).

Controlling Talkback and Listenback volume
To control the volume of the Talkback and/or Listenback mics, adjust their input fader in CueMix FX. This fader controls the volume of the input, regardless of which bus mix is being displayed in the CueMix FX window. In other words, once an input has been designated as a Talkback or Listenback input, its fader becomes global for all CueMix buses.

FILE MENU

Saving and loading hardware presets
The V4HD can store up to four presets in its on-board memory. A preset includes of all CueMix FX settings for all for mix busses, but it excludes global settings like clock source and sample rate.

The Load Hardware Preset and Save Hardware Preset commands in the CueMix FX File menu let you name, save and load presets in the V4HD.

Peak/hold time
In CueMix FX, a peak indicator is a line (representing a virtual LED) displayed in a level meter that indicates the maximum signal level registered by the meter. The Peak/hold time setting (File menu) determines how long this indicator remains visible before it disappears (or begins to drop). To disable peak/hold indicators altogether, choose Off from this sub-menu.

Mix1 Return Includes Computer
The Mix1 return includes computer output item in the CueMix FX File menu refers to a feature that is available in other MOTU audio interface products. Therefore, this menu item is grayed out when you are working with the V4HD.

Hardware follows CueMix Stereo Settings
The File menu has a checkable item called Hardware follows CueMix stereo settings. When this menu item is unchecked, you can make adjustments to stereo pairing using the front panel LCD on the V4HD itself.

EDIT MENU

Undo/Redo
CueMix FX supports multiple undo/redo. This allows you to step backwards and forwards through your actions in the software.
Copying & pasting (duplicating) entire mixes
To copy and paste the settings from one mix to another:

1. Select the source mix (Figure 9-1) and choose Copy from the Edit menu (or press control-C).

2. Choose the destination mix and choose Paste from the Edit menu (or press control-V).

Clear Peaks
Choose Clear Peaks from the Edit menu to clear all peak indicators in all CueMix FX meters.

DEVICES MENU
If you are working with more than one MOTU audio interface product, this menu displays all interfaces that are currently on line. Choose any device from the menu to edit its settings using the CueMix FX software.

CONFIGURATIONS MENU
A configuration is just like a hardware preset (a “snapshot” of all settings in CueMix FX and therefore the V4HD hardware itself), except that it can be created and managed using the CueMix FX software on your computer, completely independently of the V4HD hardware. The commands in the Configurations menu let you create, save, load, import, export and otherwise manage as many configurations as you wish.

Here is a summary of Configurations menu operations:

<table>
<thead>
<tr>
<th>Configurations Menu Item</th>
<th>What it does</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create New</td>
<td>Lets you name and save a new configuration, which appears at the bottom of the Configurations menu.</td>
</tr>
<tr>
<td>Save</td>
<td>Overwrites the current configuration (checked in the list at the bottom of the menu) with the current settings in CueMix FX.</td>
</tr>
<tr>
<td>Save To</td>
<td>Same as Save above, except that it lets you first choose the configuration you wish to save to (instead of the current one).</td>
</tr>
<tr>
<td>Delete</td>
<td>Lets you choose a configuration to permanently remove from the menu.</td>
</tr>
<tr>
<td>Import</td>
<td>Loads all configurations from a configuration file on disk.</td>
</tr>
<tr>
<td>Export</td>
<td>Saves all current configurations as a file on disk.</td>
</tr>
<tr>
<td>Configuration list</td>
<td>Choose any configuration to load it. The current (last loaded or saved) configuration has a check mark next to it.</td>
</tr>
</tbody>
</table>

Modifying a configuration
The name of the current configuration is displayed in the CueMix FX window title bar. If you make any changes to the settings in CueMix FX, an asterisk appears in front of the name to remind you that the current state of CueMix FX doesn’t match the saved configuration. If you wish to update the saved configuration with the new changes, use the Save command. To save the current state of CueMix FX to another configuration, use Save To. To save as a new, separate configuration, use Create New.

Saving a CueMix FX configuration as a hardware preset
To save a CueMix FX configuration as a hardware preset:

1. Choose the configuration from the Configurations menu to make it the current active configuration.

2. Choose File menu> Save Hardware Preset.
Type in a name, choose a preset slot and click OK.

**Saving a hardware preset as a CueMix FX configuration**

To save a hardware preset as a CueMix FX configuration:

1. Choose **File menu > Load Hardware Preset** to make it the current active preset.
2. Choose **Configuration menu > Create New** (or **Save To**) to save it as a configuration.

**TALKBACK MENU**

Choose the commands in the Talkback menu to engage or disengage Talkback or Listenback. Use the **Configure Talkback/Listenback** menu item to access the routing dialog shown in Figure 9-4 on page 81.

**PHONES MENU**

The Phones menu allows you to choose what you will hear on the headphone output, just like the Phones setting in MOTU Audio Console. However, this menu provides one extra option that is exclusive to CueMix FX: **Follow Active Mix**. This menu item, when checked, causes the headphone output to mirror the output of the current mix being viewed in CueMix FX. For example, if you are currently viewing mix bus 3, the headphones will mirror the mix bus 3 output (whatever it is assigned to).

**CONTROL SURFACES MENU**

CueMix FX can be controlled from an automated control surface such as the Mackie Control™. Use the commands in the **Control Surfaces** menu to enable and configure this feature.

**Application follows control surface**

When checked, the **Application follows control surface** menu command makes the CueMix FX window scroll to the channel you are currently adjusting with the control surface, if the channel is not visible when you begin adjusting it. The same is true for the displayed mix: if you adjust a control in a bus that is not currently being displayed, CueMix FX will jump to the appropriate mix to display the control you are adjusting.

**Share surfaces with other applications**

When the **Share surfaces with other applications** menu command is checked, CueMix FX releases the control surface when you switch to another application. This allows you to control your other software with the control surface. Here’s a simple way to understand this mode: the control surface will always control the front-most application. Just bring the desired application to the front (make it the active application), and your control surface will control it. When you’d like to make changes to CueMix FX from the control surface, just bring CueMix FX to the front (make it the active application).

When this menu item is unchecked, your control surface will affect CueMix FX all the time, even when CueMix FX is not the front-most application. In addition, you will not be able to control other host software with the control surface at any time (because CueMix FX retains control over it at all times). This mode is useful when you do not need to use the control surface with any other software.

**Mackie Control Surfaces**

CueMix FX includes support for the following control surface products:

- Mackie Control™
- Mackie HUI™
- Mackie Baby HUI™

Use the sub-menu commands in the **Mackie Control Surfaces** menu item to turn on and configure control surface support, as described briefly below.
Enabled
Check this menu item to turn on control surface operation of CueMix FX. Uncheck it to turn off control surface support.

Configure…
Choose this menu item to configure your control surface product. Launch the on-line help for specific, detailed instructions for configuring CueMix FX for operation with your control surface product.

Figure 9-5: Refer to the extensive on-line help for details about configuring CueMix FX for operation with your control surface product.
CHAPTER 10 MOTU SMPTE Console

OVERVIEW
MOTU SMPTE Console gives you access to the V4HD’s time code synchronization and generation features when it is operating in Audio only mode, (when the “Enable Video” on page 50 is disabled). When the V4HD’s video features are enabled, you manage time code synchronization within the context of Premiere Pro. See chapter 7, “Premiere Pro” (page 57).

When operating in Audio only mode (“Audio only” on page 39), the V4HD can resolve directly to SMPTE time code via its LTC input (or any analog input), without a separate synchronizer. The V4HD can also generate time code from its LTC output. The V4HD provides a DSP-driven phase-lock engine with sophisticated filtering that provides fast lockup times and very high accuracy.
MOTU SMPTE CONSOLE
The included MOTU SMPTE Console™ software provides a complete set of tools to generate SMPTE for striping, regenerating or slaving other devices to the computer when the V4HD is operating in Audio Only mode (see “Enable Video” on page 50).

CLOCK/ADDRESS
The Clock/Address menu (Figure 10-1) provides the same global Clock Source setting as in MOTU Audio Console (“Clock Source” on page 71), but it includes additional information: each setting shows both the clock and the address (time code or sample location), separated by a forward slash (/). To resolve the V4HD to SMPTE time code under normal operation, choose the SMPTE / SMPTE setting in the Clock/Address menu. This means that the system will use time code as both the time base and the address.

FRAME RATE
This setting should be made to match the SMPTE time code frame rate of the time code that the system will be receiving. The V4HD can auto-detect and switch to the incoming frame rate, except that it cannot distinguish between 30 fps and 29.97 fps time code, or 23.976 fps and 24 fps. So if you are working with either of these rates, make sure you choose the correct rate from this menu.

READER SECTION
The Reader section (on the left-hand side of the window in Figure 10-1) provides settings for synchronizing the V4HD to SMPTE time code.

Status lights
The four status lights (Tach, Clock, Address and Freewheel) give you feedback as follows.

Tach
The Tach light blinks once per second when the V4HD has successfully achieved lockup to SMPTE time code and SMPTE frame locations are being read.

Clock
The Clock light glows continuously when the V4HD has successfully achieved lockup to an external time base, such as SMPTE time code.

The Reader section provides settings for resolving to video and/or SMPTE time code.

The Generator section provides settings for striping SMPTE time code.

Figure 10-1: SMPTE console gives you access to the V4HD’s on-board SMPTE time code synchronization features.
Address
The Address light glows continuously when the V4HD has successfully achieved lockup to SMPTE time code.

Frewheel
The Freewheel light illuminates when the V4HD is freewheeling address (time code), clock or both. For details about Freewheeling, see “Freewheel Address” and “Freewheel clock” below.

SMPTE source
Choose SMPTE, or the analog input to which the SMPTE time code source is connected. This is the input that the V4HD “listens” to for time code.

Freewheel Address
Freewheeling occurs when there is a glitch or drop-out in the incoming time code for some reason. The V4HD can freewheel past the drop-out and then resume lockup again as soon as it receives readable time code. Choose the amount of time you would like the V4HD to freewheel before it gives up and stops altogether.

The V4HD cannot freewheel address without clock. Therefore, the Freewheel Address setting will always be lower than or equal to the Freewheel Clock setting, and both menus will update as needed, depending on what you choose.

Keep in mind that freewheeling causes the system to keep going for as long as the duration you choose from this menu, even when you stop time code intentionally. Therefore, if you are starting and stopping time code frequently (such as from the transports of a video deck), shorter freewheel times are better. On the other hand, if you are doing a one-pass transfer from tape that has bad time code, longer freewheel times will help you get past the problems in the time code.

The ‘Infinite’ freewheel setting
The Infinite freewheel setting in the Freewheel Address menu causes the V4HD to freewheel indefinitely, until it receives readable time code again. To make it stop, click the Stop Freewheel button.

Freewheel clock
Freewheeling occurs when there is a glitch or drop-out in the incoming SMPTE time code for some reason. The V4HD can freewheel past the drop-out and then resume lockup again as soon as it receives a stable, readable clock signal.

The V4HD cannot freewheel address without clock. Therefore, the Freewheel Address setting will always be lower than or equal to the Freewheel Clock setting, and both menus will update as needed, depending on what you choose.

The ‘Infinite’ freewheel setting
The Infinite freewheel setting in the Freewheel Clock menu causes the V4HD to freewheel indefinitely, until it receives readable time code again. To make it stop, click the Stop Freewheel button.

Stop Freewheel
The Stop Freewheel button stops the system if it is currently freewheeling.

GENERATOR SECTION
The Generator section (on the right-hand side of the window in Figure 10-1) provides settings for generating SMPTE time code.

Tach light
The Tach light blinks once per second when the V4HD is generating SMPTE time code.

Destination
In the Destination menu, choose SMPTE from the menu to generate time code from the LTC output on the V4HD rear panel, or choose any other analog output for LTC output.
**Stripe**
Click this button to start or stop time code. To set the start time, click directly on the SMPTE time code display in the Generator section and type in the desired start time. Or drag vertically on the numbers.

![Figure 10-2: Setting the time code start time.](image)

**Regenerate**
This option, when enabled, causes the generator to generate time code whenever the V4HD is receiving SMPTE time code.
Part 4
Standalone Operation
The V4HD can operate as a standalone video and audio distributor and converter. It can also operate as a standalone digital audio mixer.

**Enabling standalone mode**

To put the V4HD in Standalone mode, unplug its FireWire cable connection to the computer, or turn off the computer. Standalone mode is very similar to Convert mode: no video goes to FireWire or the computer because it is disconnected, but the currently selected video source is converted, if necessary, and distributed to all other V4HD video outputs.

**Front panel programming**

In standalone mode, use the front panel LCD to make settings. See the next chapter “Front Panel LCD Programming” on page 93. Here is a brief summary of the main settings involved.

**Choosing a video source**

To choose the video source to be converted and sent to all outputs:

1. Press the MENU button repeatedly until you see the VIDEO menu.
2. Press the left/right PAGE buttons until you see the Video Source setting.
3. Turn the VALUE knob to choose the desired video source.
4. Push the VALUE knob to confirm your choice.

**Other video settings**

After choosing the video source above, press the left/right PAGE buttons to access additional video settings, such as specifying the HD output format.

**Sync and time code settings**

To access sync and time code settings:

1. Press the MENU button repeatedly until you see the V4HD SETUP menu.
2. Press the left/right PAGE buttons to access the time code settings:
   - “Input Timecode” on page 100
   - “Output Timecode” on page 100
   - “SDI Out TC Format” on page 100

**Audio monitoring**

To access the audio monitoring features:

1. Press the MENU button repeatedly until you see the CUEMIX menu.
2. Press the left/right PAGE buttons to access the CueMix settings. For complete details, see “CueMix Menu” on page 97.
STANDALONE VIDEO CONVERSION

The V4HD provides hardware-based conversion features, which you can employ during standalone operation. Here are a few examples:

- You could up-convert SD to HD in the V4HD hardware and then distribute it to all HD outputs. Or you could down-convert HD to SD and distribute it to all SD outputs.
- You could connect a 23.976 fps input signal, insert pull-down to 29.97 fps and send this signal to all SD and HD outputs.
- As demonstrated below in Figure 11-1, you could choose SD component (in YPbPr format) as your input source and distribute this input signal to all SD outputs on the V4HD. At the same time, you could also be converting it to 720p or 1080p 23.976 with 14:9 pillar box formatting on all of the V4HD’s HD outputs.

These are just a few examples. There are many possible conversion scenarios.

Conversion settings

You can program the V4HD’s conversion settings using the front panel LCD. You can also use the Capture/Convert Signal Path settings in the MOTU Video console software beforehand, and then disconnect the computer. The Capture/Convert settings you make in the software are remembered and remain in effect during standalone operation.

AUDIO ONLY MODE

To put the V4HD into Audio only mode:

1. Press the MENU button repeatedly until you see the V4HD SETUP menu.
2. Press the left/right PAGE buttons to access the AV Mode setting.
3. Turn the VALUE knob to choose Audio Only.
4. Push the VALUE knob to confirm your choice.

This turns the V4HD into standalone 24-channel, 12-bus audio mixer (16 channels and 4 busses at the 4x sample rates). To control the mixer from the front panel LCD, see “CueMix Menu” on page 97.

---

Figure 11-1: An example of standalone hardware distribution and conversion. The V4HD source input is set to SD component YPbPr. The V4HD hardware is distributing this input signal to all outputs and simultaneously converting it to 1080p 23.976 with 14:9 pillar box formatting for HD output.
CHAPTER 12  Front Panel LCD Programming

OVERVIEW
The V4HD is the first FireWire video interface to offer complete front-panel programming via a 2x16 backlit LCD display. Almost all V4HD settings can be accessed via these front-panel controls.

Figure 12-1: The V4HD front panel controls.
VIDEO STATUS
The VIDEO STATUS section (Figure 12-1) provides quick feedback regarding the V4HD’s current video operation. It is divided into the following banks of LEDs: MODE, SIGNAL, FORMAT, RATE and Genlock (Figure 12-2):

MODE
The MODE bank of LEDs (Figure 12-2) indicates the current operational mode for the V4HD, as summarized below. For complete details on these modes, see chapter 5, “V4HD Basics” (page 37).

<table>
<thead>
<tr>
<th>MODE LED</th>
<th>What it indicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture</td>
<td>The V4HD is connected to the computer and it is in Capture mode, i.e. it is under the control of Premiere Pro for video capture, or it is under control of the MOTU Video console software with the Preview tab selected.</td>
</tr>
<tr>
<td>Playback</td>
<td>Premiere Pro is playing back. Or Playback Only mode is enabled. See “Playback Only (disable inputs)” on page 50.</td>
</tr>
<tr>
<td>Convert</td>
<td>The V4HD is not in Capture or Playback mode.</td>
</tr>
<tr>
<td>Audio only</td>
<td>The Enable Video option is currently disabled and the V4HD is operating as an audio interface only. See “Enable Video” on page 50.</td>
</tr>
<tr>
<td>Standalone</td>
<td>The V4HD is not currently connected to a computer via FireWire, or the computer is turned off. See chapter 11, “Standalone Operation” (page 91).</td>
</tr>
<tr>
<td>Compressed</td>
<td>Indicates that the currently selected format in the SIGNAL bank is compressed video.</td>
</tr>
<tr>
<td>Uncompressed</td>
<td>Indicates that the currently selected format in the SIGNAL bank is uncompressed video (SD only).</td>
</tr>
</tbody>
</table>

SIGNAL
The LEDs in the SIGNAL bank (Figure 12-2) represent the various video inputs and outputs on the V4HD. FireWire is viewed as another input or output, depending on whether the V4HD is capturing or playing back.

The STATUS button
Repeatedly press the video STATUS button (Figure 12-1) to cycle through the input and output signals in the SIGNAL column to view their current settings in the FORMAT, RATE and Genlock banks (Figure 12-2).

All inputs and outputs
As you cycle through the individual formats in the SIGNAL bank, you eventually come to a setting that illuminates all inputs and outputs. This status settings is useful because it tells you, at a glance, everything that is going on with the V4HD inputs and outputs. To learn the status of a specific input or output format, simply keep pressing the STATUS button until its LED illuminates.

FORMAT
The LEDs in the FORMAT bank (Figure 12-2) represent the various video formats supported by the V4HD. When you view the status of an input signal (the Input LED is illuminated in the SIGNAL bank), this bank indicates the currently selected input. The RGB or YPbPr LEDs also indicate the component color space for the currently selected input or output signal.
RATE
The LEDs in the RATE bank (Figure 12-2) indicate the frame rate for the currently selected signal in the SIGNAL bank.

GENLOCK
The LEDs in the Genlock bank (Figure 12-2) indicate the input format to which the V4HD has successfully achieved genlock. It also indicates the format for the currently selected output in the SIGNAL bank. If you are viewing all formats in the SIGNAL bank (Figure 12-3), the Genlock bank will display the SD and HD formats that the V4HD is genlocking to and generating.

Flashing LEDs
When LEDs flash in the VIDEO STATUS section, it means that the V4HD has not yet successfully established genlock. Once genlock is achieved, the LEDs stop flashing.

Blinking LEDs
The Auto Detect Input Format menu in the MOTU Video console software Setup tab (Figure 6-19 on page 48) lets you choose the degree to which the V4HD will automatically detect the video format for the currently chosen video source (Figure 6-3). If you choose the Manual option from this menu, you specify the format using the menus in the signal path, as explained in “Manual” on page 48. In this situation, the Genlock LEDs will blink every second or so to indicate that no auto-detection is occurring and than the setting has been specified manually.

MULTI-FUNCTION LCD DISPLAY
The V4HD’s multi-function LCD display (Figure 12-1) gives you access to the V4HD’s many powerful features. You can use the display when the V4HD is connected to the computer and operating as a video (or audio) interface, and you can also use it when the V4HD is not connected to the computer and is instead operating as a stand-alone converter (or audio mixer).

Making settings from the LCD versus the software console
If the V4HD is currently connected to a computer, some settings must be made from the V4HD’s console software applications on the computer. In this case, when you try to make a setting in the LCD, you’ll see a message that says Please use computer.

The MENU, PAGE and CURS (cursor) buttons
Use the MENU, PAGE and CURS (cursor) buttons (Figure 12-1) to navigate the menus in the LCD display, as explained in the following sections.

Push the MENU button repeatedly to access the four main menus:

- V4HD Setup
- Video
- Audio
- CueMix

Use the left/right PAGE buttons to access the various settings in each menu.

Use the left/right CURSOR buttons navigate through multiple settings in the LCD, where available. If there is only a single setting currently displayed, use the VALUE/ENTER knob (below).

The VALUE/ENTER knob
The VALUE/ENTER knob (Figure 12-1) is a push-button digital rotary encoder. Turn it to change the value of the setting currently displayed. The new
value chosen will flash. Push the VALUE knob to confirm your choice; the newly chosen value will stop flashing.

The PHONES knob
The PHONES knob lets you control the volume of either the headphone jack or the outputs on the rear panel that you have designated as the main outs (see “Main Volume Ctl (Control)” on page 100). Press the knob to toggle between the headphones and the main outs. As explained in the next section, the LCD provides detailed feedback as you turn the knob. To view the current setting without changing it, just push the knob (without turning it).

Parameter “zooming”
For many settings, the LCD temporarily “zooms in” to display a long-throw meter and alphanumeric display to give you precise, real-time feedback as you adjust the setting. For example, if you change the headphone volume, the LCD will display a level meter and gain reduction reading that updates as you turn the volume knob. After a brief time-out, the display returns to its previous state before you turned the volume knob.

Figure 12-4: For many settings, the LCD “zooms in” on the setting as you adjust it.

VIDEO MENU
Press the MENU button repeatedly to access the Video menu. The Video menu gives you access to the many video-related settings in the V4HD, as described briefly below.

Video Source
This is the setting described in “Video Source menu” on page 44.

Auto Detect
This is the setting described in “Auto Detect Input Format” on page 48.

HD Format
This is the setting described in “Format Conversion menu” on page 44.

Up Convert/Down Convert
These are the same settings as described in “SD to HD up conversion formats” on page 45 and “HD to SD down conversion formats” on page 44.

HDMI Source
This is the setting described in “HDMI Output Source” on page 51.

SD Component Out
This is the setting described in “SD Component Output Color Mode” on page 51.

HD Component Out
This is the setting described in “HD Component Output Color Mode” on page 51.

HDMI Mode
This is the setting described in “HDMI/DVI” on page 47.

NTSC Setup
This is the setting described in “480i Setup” on page 49.

480i Component
This is the setting described in “480i Component Analog Format” on page 49.

Legalizer NTSC (or PAL)
This is the setting described in “480i Broadcast Legalizer” on page 50 and “576i Broadcast Legalizer” on page 51.
AUDIO MENU
Press the MENU button repeatedly to access the Audio menu. The Audio menu gives you access to the many audio-related settings in the V4HD, as described briefly below.

Clock Source
This is the setting described in “Clock Source” on page 71.

Sample Rate
This is the setting described in “Sample Rate” on page 70.

Word Clock Out
This is the setting described in “Word Out” on page 75.

Bank Enable
This is the setting described in “Analog Input/Output”, “AES/EBU Input/Output”, “ADAT Optical Input/Output” and “SDI Input and SDI/HDMI Output” on page 73. Turn the VALUE knob to scroll through each of the four banks, and push the knob to toggle the enable state for each bank (y = yes = enabled; n = no = disabled).

ADAT Type
The ADAT Type settings is a parameter that can only be made from the V4HD front panel LCD. This setting lets you change the V4HD’s 2x optical input and output (88.2 or 96kHz) to Type I (for 2x optical connection to SMUX-compatible products) or Type II (for 2x optical connection to MOTU products). Turn the VALUE knob to switch between Type I and II, respectively, and then push the knob to confirm your choice.

Additional Delay
This is the setting described in “Additional Audio Delay” on page 74.

Sync Cuemix
This is the setting described in “Sync CueMix audio with video output” on page 75.

CUEMIX MENU
Press the MENU button repeatedly to access the CueMix menu. The CueMix menu gives you access to the V4HD’s built-in 32 channel, 16-bus monitor mixer (or 8 channels and 4 busses at the 4x sample rates).

Working with the mixer is much more intuitive using the graphic faders and knobs in the CueMix FX software described in chapter 9, “CueMix FX” (page 77). But this menu lets you control these features in situations where you do not have a computer connected.

For a complete explanation of the V4HD’s CueMix monitor mixer, see chapter 9, “CueMix FX” (page 77). Once you have read this chapter, the controls described below will make a lot more sense.
Navigating CueMix parameters in the LCD

The CueMix mixer has the following layout in the LCD display:

![Image of LCD display]

**Navigating CueMix parameters in the LCD**

**Front Panel LCD Programming**

The CueMix mixer has the following layout in the LCD display:

**Figure 12-5: Navigating the CueMix mixer in the LCD display.**

Use the left/right PAGE buttons to proceed through each CueMix parameter as described in the following sections. When a parameter flashes, use the VALUE knob to access a different bus, parameter, etc. Use the CURSOR buttons to navigate through the eight channel settings (Figure 12-5).

**Choosing a bus to work with**

CueMix provides a separate mix bus for each of the V4HD's 16 output pairs. Busses are identified by their output pair destination. To access a mix bus, press the left/right PAGE buttons until the Mix bus parameter (Figure 12-5) flashes. Turn the VALUE knob to choose the desired bus.

**Input Bank**

To access an input bank, press the left/right PAGE buttons until the Input Bank (Figure 12-5) flashes and then turn the VALUE knob to choose the desired bank. In stand-alone mode, you can enable or disable banks using the front panel LCD as explained in “Bank Enable” on page 97.

**Mix parameters**

**Mix parameters** are settings such as channel volume (gain), pan, mute/solo, etc. To access the mix parameters for the currently displayed bank, press the left/right PAGE buttons until the Mix parameter (Figure 12-5) flashes and then turn the VALUE knob to choose the desired parameter. You can then modify that setting for each individual input channel, as explained in the next section.

**Channel Settings**

A channel setting is an individual input channel's setting for volume (gain), pan, mute/solo, etc. To access a channel's current setting for the currently displayed mix parameter, press the left/right PAGE buttons until one of the Channel Settings (Figure 12-5) flashes. Use the left/right CURSOR buttons to move among the 8 displayed channels (for the currently chosen Input Bank as shown in Figure 12-5), and then turn the VALUE knob to adjust the value or setting for the parameter. Mix parameters are explained briefly below:

<table>
<thead>
<tr>
<th>Mix parameter</th>
<th>Range</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>OFF, -84 dB</td>
<td>Each channel displays a small fader. Push the VALUE knob to toggle between OFF and unity gain (0dB).</td>
</tr>
<tr>
<td>Pan</td>
<td>-64 to +64</td>
<td>Push the VALUE knob to jump to pan center. Stereo pairs (explained below) are panned hard left/right by default.</td>
</tr>
<tr>
<td>Solo</td>
<td>“s” or blank</td>
<td>Push the VALUE knob to toggle between soloed (“s”) and not soloed (blank), or turn the knob to toggle.</td>
</tr>
<tr>
<td>Mute</td>
<td>“m” or blank</td>
<td>Push the VALUE knob to toggle between muted (“m”) and unmuted (blank), or turn the knob to toggle.</td>
</tr>
<tr>
<td>Pair</td>
<td>“[ ]” or blank</td>
<td>This setting applies universally across ALL mixes. Push the VALUE knob to toggle a stereo input pair between separate mono inputs (blank) or a stereo pair (“[ ]”). Or turn the knob to toggle. When a pair of inputs are linked, all of their mix settings become linked (gain, solo, etc.) When the pair is first created, pan is set to hard left and hard right, but the channels can then be further modified independently. When a pair is unlinked, the channels are set to pan-center.</td>
</tr>
</tbody>
</table>
**Bus level**
The bus level is the overall volume for the bus output pair. To access bus level, press the left/right PAGE buttons until you see *Bus Level* displayed in the top row of the LCD (Figure 12-6). The current bus is displayed in the bottom row. To choose a different bus, press the left/right CURSOR buttons. To adjust the overall output volume for the bus, turn the VALUE knob.

**Figure 12-6: Bus level and additional bus settings.**

**Additional bus settings**
You can adjust additional bus settings using the same basic technique as described above for bus level. Additional settings include the following:

**Bus Mute**
The *Bus Mute* setting lets you temporarily silence the bus output pair.

**Init Bus Mix**
The *Init Bus Mix* setting lets you reset the current mix. All inputs get reset to unity gain (0 dB), pan center, etc.

**Copy Bus Mix**
*Copy Bus Mix* lets you copy all of the settings for the currently displayed mix. Turn the VALUE knob to choose a mix. Push VALUE to copy it. You can then paste the settings to another mix as explained below. The word *Copied* appears briefly to confirm that the mix settings have been successfully copied.

**Paste Bus Mix**
After you copy mix settings (explained above), *Paste Bus Mix* lets you paste the copied mix settings to another mix. Turn the VALUE knob to choose a mix. Push VALUE to paste. The word *Pasted* appears briefly to confirm the paste. The following mix parameter are included in the paste operation: Gain, Pan, Solo, Mute and stereo pairing. The following mix parameters are not pasted: Bus output, Bus mute and Bus gain.

**Save/Name Preset**
The *Save/Name Preset* setting lets you name and save up to four separate V4HD presets. A preset holds all of the current CueMix DSP mix settings for all 16 mix busses. Setup parameters are not included. The name can have up to 12 characters. Here is a summary of how to name and save a preset:

<table>
<thead>
<tr>
<th>To do this:</th>
<th>Do this:</th>
</tr>
</thead>
<tbody>
<tr>
<td>To change the currently flashing character</td>
<td>Turn the VALUE knob</td>
</tr>
<tr>
<td>To move to a different character</td>
<td>Press the CURSOR buttons.</td>
</tr>
<tr>
<td>To save the preset</td>
<td>Push the VALUE knob. If you are asked to replace existing preset, push VALUE again to replace it, or turn it to select a different preset.</td>
</tr>
</tbody>
</table>

**Load preset**
After you’ve saved one or more presets, *Load Preset* lets you recall them. Turn the VALUE knob to choose a preset. Push VALUE to load it. The word *Loaded* appears briefly to confirm the operation.
V4HD SETUP MENU
Press the MENU button repeatedly to access the V4HD Setup menu. This menu gives you access to several important global settings in the V4HD, as described briefly below.

AV Mode
This is the setting described in “Enable Video” on page 50.

LCD Contrast
LCD Contrast lets you adjust the contrast of the front panel LCD display (Figure 12-1).

Input Timecode
This is the setting described in “Timecode Source” on page 49.

Output Timecode
This is the setting described in “Timecode Destination” on page 49.

SDI Out TC Format
This is the setting described in “SDI Output Timecode Format” on page 49.

Main Volume Ctl (Control)
The Main Volume Control setting can only be changed from the V4HD front panel LCD. This lets you choose which audio output pairs on the V4HD are controlled using the front panel main volume knob (as explained in “The PHONES knob” on page 96). For example, you could enable analog outs 1-2, which might be connected to a pair of powered speakers. Or you could enable analog outs 1-2, 3-4 and 5-6. This would allow you to have main out volume control for a 5.1 surround mix, using the PHONES knob on the front panel of the V4HD.

The V4HD has 16 output pairs (32 channels total). Turn the VALUE knob to scroll through all 16 output pairs (four in each 8-channel bank). Push the VALUE knob to include it (y = yes = include) or exclude it (n = no = exclude).

Factory Defaults
The Factory Defaults setting can only be accessed from the V4HD front panel LCD. The Factory Defaults setting restores the V4HD factory settings. Push VALUE to initiate the operation. When the LCD asks “Are you sure?”, push VALUE to complete the operation.
Part 5
Appendices
Connecting or powering gear during operation
It is not recommended that you connect/disconnect, or power on/off devices connected to the V4HD while recording or playing back audio. Doing so may cause a brief glitch in the audio.

When I try to genlock via the V4HD's VIDEO REF input, I have problems.
If there is no device connected to the REF THRU jack, make sure that the termination switch is set to the 75Ω TERM position. Proper termination is critical for successful genlock.

The V4HD is having trouble genlocking to my video deck.
Is the deck connected to a video output from the V4HD? If so, it could be a clock loop problem, where the deck is trying to resolve to its video input, while the V4HD is trying to resolve to video input from the video deck. Try disconnecting the output from the V4HD to the video deck. You could also try choosing the V4HD's manual genlock mode. See “Auto Detect Input Format” on page 48.

I'm not seeing any SD output. Why?
SD output is disabled when the HD frame rate is set to 24, 30, or 60 (as opposed to 23.976, 29.97, or 59.94). Check the HD frame rate.

I can't get any video input or output at all. Why?
The V4HD's video features can be temporarily disabled. Perhaps they are currently turned off. See “Enable Video” on page 50.

My HDMI output looks unusually blurry and distorted.
When outputting HD content, go to the Output tab in MOTU Video console and click the HD button for the HDMI Output Source option.

My HDMI output does not output any video.
Make sure the HDMI/DVI menu in the signal path diagram is set to HDMI, not DVI.

How can I enable time code when the V4HD is in Audio & Video mode?
Time code becomes active when the Timecode Destination option (page 49) gets set to anything other than None. Choose HD-SDI or SD-SDI to output the desired time code format from LTC out of the V4HD.

I hear clicks and pops on audio from an external SDI device.
Make sure your Video Source is set to SD- or HD-SDI for V4HD to establish sync.

CUSTOMER SERVICE
We are happy to provide customer service to our registered users. If you haven't already done so, please take a moment to register on line at motu.com/register, or fill out and mail the registration card included with your V4HD. Doing so entitles you to technical support and notices about new products and software updates.

TECHNICAL SUPPORT
If you are unable, with your dealer's help, to solve problems you encounter with the V4HD system, you may contact our technical support department in one of the following ways:

- Tech support hotline: (617) 576-3066 (Monday through Friday, 9 am to 6 pm EST)
- Tech support 24-hour fax line: (617) 354-3068
- Online support: www.motu.com/support

Please provide the following information to help us solve your problem as quickly as possible:
■ The serial number of the V4HD system. This is printed on a sticker placed on the bottom of the V4HD rack unit. You must be able to supply this number to receive technical support.

■ A brief explanation of the problem, including the exact sequence of actions which cause it, and the contents of any error messages which appear on the screen.

■ The pages in the manual which refer to the parts of the V4HD with which you are having trouble.

■ Windows version information.

We’re not able to solve every problem immediately, but a quick call to us may yield a suggestion for a problem which you might otherwise spend hours trying to track down.

If you have features or ideas you would like to see implemented, we’d like to hear from you. Please write to the V4HD Development Team, MOTU Inc., 1280 Massachusetts Avenue, Cambridge, MA 02138.
VIDEO INPUT AND OUTPUT FORMATS
The V4HD supports the following video input and output formats:

SD
- 480i29.97 (NTSC)
- 486i29.97
- 576i25 (PAL)

HD
- 720p23.976
- 720p24
- 720p25
- 720p29.97
- 720p30
- 720p50
- 720p 59.94
- 720p60
- 1080p23.976
- 1080p24
- 1080p25
- 1080p29.97
- 1080p30
- 1080PsF23.976
- 1080PsF24
- 1080PsF25
- 1080PsF29.97
- 1080PsF30
- 1080i25
- 1080i29.97
- 1080i30

PREMIERE PRO VIDEO FORMATS
The V4HD can play back the following video formats from Premiere:

SD
- Uncompressed 8-bit and 10-bit at 480p23.976, 480i29.97, 486i29.97 and 576i25
- DVCPro25 and DVCPro50 at 480p23.976, 480i29.97 and 576i25

Note: the V4HD supports 480p23.976 SD capture and playback with hardware pull-down insertion/removal.

HD
- DVCPRO HD 1080i50 (1440 x 1080) and 1080i60 (1280 x 1080) at all 1080i frame rates listed on this page

The V4HD can capture and play back DVCPRO HD 1080i50 at 30 fps, which provides better resolution (1440 pixels wide) than 1080i60 (1280 pixels wide). However, the 1080i50 format is not widely supported and cannot be recorded or played by other DVCPRO HD compatible devices, such as a DVCPRO HD video deck or camera.
APPENDIX C  V4HD Specifications

VIDEO I/O
- 1 x HD-SDI in and out (4:2:2 10-bit) on independent BNC connectors
- 1 x SD-SDI in and out (4:2:2 10-bit) on independent BNC connectors
- 1 x extra HD-SDI output connector
- 1 x extra SD-SDI output connector
- 1 x HDMI output (4:2:2 10-bit, YCbCr or RGB)
- Support for DVI output with HDMI-to-DVI adapter (sold separately)
- 1 x HD component in and out (10-bit, YPbPr or RGB) on independent BNCs
- 1 x SD component in and out (10-bit, YPbPr or RGB) on independent BNCs
- 1 x composite in and out (10-bit)
- 1 x S-video in and out (10-bit)
- 12-bit A/D and D/A converters on all analog video in/out with up to 8x oversampling
- 1 x 400 Mbit (1394) FireWire A
- 2 x 800 Mbit (1394b) FireWire B (Mac only)

AUDIO I/O
- 32 channels of simultaneous audio input and output
- 8 channels of analog in/out at all standard sample rates from 44.1 to 192kHz
- 4 x XLR analog in/out — provides 4-channel direct connection without a breakout cable
- 8 channels of AES/EBU digital in/out at sample rates up to 96kHz
- 2 x AES/EBU connectors — provides 4-channel direct connection without a breakout cable
- 8-channel HD-SDI and SD-SDI embedded audio in/out, 24-bit at 44.1 or 48kHz
- 8-channel HDMI embedded audio output, 24-bit at 44.1 or 48kHz
- 8-channel ADAT optical digital audio in/out — includes a second bank of optical connectors for 8-channel operation at sample rates up to 96kHz.
- Flexible 8-channel sample rate conversion — apply rate conversion to any 8-channel digital input or output bank, including AES/EBU, embedded and optical.
- Front panel headphone jack with dedicated volume control
- Programmable front panel volume control for up to 32 audio outputs — push the headphone volume knob and then turn it to control output level for any/all outputs, from stereo main outs to 7.1 surround to all 32 outs. The LCD provides visual feedback for the digital rotary encoder as the user turns it.
- CueMix FX built-in monitor mixer — 32-channel, 16-bus mixer for monitoring live inputs from cameras, mic preamps or other audio sources with no delay. Set up send/return loops to digital mixers and outboard audio processing.
- Multiple CueMix FX mixes — create up to 16 separate stereo monitor mixes (four stereo at 176.4 or 192kHz) for main outs, headphones, outboard gear send/return loops, etc.
Audio delay compensation — both fully automated and programmable controls ensure that audio always remains perfectly in sync with picture.

Audio only mode — operates as a 24 channel cross-platform audio interface.

Stand-alone operation — mix and monitor audio with no computer connected.

SYNC AND DEVICE CONTROL

Video reference in and thru — resolves to blackburst, composite or HD Tri-level sync.

Time code in and out — generates and resolves to time code (LTC, SD VITC or embedded).

RS-422 machine control — control the transport of a connected camera or video deck using Premiere Pro or other machine control host via standard 9-pin protocol.

Word clock in, out and thru — continuously resolves to audio word clock from a digital mixer, distribution box or other source at sample rates from 44.1 to 192 kHz.

Direct Digital Synthesis — DSP-driven phase lock engine provides ultra-low audio jitter.

Field upgradable firmware via USB — allows you to download new functionality from a computer.

International auto-switching internal power supply

FRONT PANEL PROGRAMMING AND MONITORING

Front-panel backlit LCD — provides access to most settings directly from the front panel.

8 dedicated 10-segment ladder LEDs with clip indicators for all 8 analog audio ins

8 programmable 10-segment ladder LEDs with clip indicators for displaying any 8-channel bank (analog, AES/EBU, optical or embedded) in or out

Video status LEDs — provide quick access to capture/playback settings for each video format.

Time code display — provides frame-accurate time code readout when converting or generating time code, or during playback from host software.

INCLUDED SOFTWARE AND COMPATIBILITY

Includes MOTU Video console software — graphically displays HD and SD signal path and provides complete control of all programmable features and settings.

Includes CueMix FX software — provides on-screen mixing of all 32 audio channels of analog and digital input and output via graphic mixer with 32 faders.

Supports Premiere Pro CS3 (version 3.1) or later
APPENDIX D  DB25 to XLR Pin Outs

**DB25 TO 8 FEMALE (IN) OR MALE (OUT) XLR**
For balanced V4HD analog input or output
Panasonic/Tascam standard

**ANALOG DB25**
8 CHANNEL BALANCED IN OR OUT

**DB25 TO 4 FEMALE (IN) / 4 MALE (OUT) XLR**
For bi-directional V4HD AES/EBU digital I/O
Panasonic/Tascam standard

**AES/EBU DB25**
8 CHANNEL BIDIRECTIONAL IN AND OUT
### DB25 to 8 Female (IN) or Male (OUT) XLR
For balanced V4HD analog input or output
Panasonic/Tascam standard

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Channel 8 (+)</td>
</tr>
<tr>
<td>2</td>
<td>SG (Signal Ground)</td>
</tr>
<tr>
<td>3</td>
<td>Channel 7 (-)</td>
</tr>
<tr>
<td>4</td>
<td>Channel 6 (+)</td>
</tr>
<tr>
<td>5</td>
<td>SG</td>
</tr>
<tr>
<td>6</td>
<td>Channel 5 (-)</td>
</tr>
<tr>
<td>7</td>
<td>Channel 4 (+)</td>
</tr>
<tr>
<td>8</td>
<td>SG</td>
</tr>
<tr>
<td>9</td>
<td>Channel 3 (-)</td>
</tr>
<tr>
<td>10</td>
<td>Channel 2 (+)</td>
</tr>
<tr>
<td>11</td>
<td>SG</td>
</tr>
<tr>
<td>12</td>
<td>Channel 1 (-)</td>
</tr>
<tr>
<td>13</td>
<td>Not used</td>
</tr>
<tr>
<td>14</td>
<td>Channel 8 (-)</td>
</tr>
<tr>
<td>15</td>
<td>Channel 7 (+)</td>
</tr>
<tr>
<td>16</td>
<td>SG</td>
</tr>
<tr>
<td>17</td>
<td>Channel 6 (-)</td>
</tr>
<tr>
<td>18</td>
<td>Channel 5 (+)</td>
</tr>
<tr>
<td>19</td>
<td>SG</td>
</tr>
<tr>
<td>20</td>
<td>Channel 4 (-)</td>
</tr>
<tr>
<td>21</td>
<td>Channel 3 (+)</td>
</tr>
<tr>
<td>22</td>
<td>SG</td>
</tr>
<tr>
<td>23</td>
<td>Channel 2 (-)</td>
</tr>
<tr>
<td>24</td>
<td>Channel 1 (+)</td>
</tr>
<tr>
<td>25</td>
<td>SG</td>
</tr>
</tbody>
</table>

### DB25 to 4 Female (IN) / 4 Male (OUT) XLR
For bi-directional V4HD AES/EBU digital I/O
Panasonic/Tascam standard

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Channel 7/8 Out (+)</td>
</tr>
<tr>
<td>2</td>
<td>SG (Signal Ground)</td>
</tr>
<tr>
<td>3</td>
<td>Channel 5/6 Out (-)</td>
</tr>
<tr>
<td>4</td>
<td>Channel 3/4 Out (+)</td>
</tr>
<tr>
<td>5</td>
<td>SG</td>
</tr>
<tr>
<td>6</td>
<td>Channel 1/2 Out (-)</td>
</tr>
<tr>
<td>7</td>
<td>Channel 7/8 In (+)</td>
</tr>
<tr>
<td>8</td>
<td>SG</td>
</tr>
<tr>
<td>9</td>
<td>Channel 5/6 In (-)</td>
</tr>
<tr>
<td>10</td>
<td>Channel 3/4 In (+)</td>
</tr>
<tr>
<td>11</td>
<td>SG</td>
</tr>
<tr>
<td>12</td>
<td>Channel 1/2 In (-)</td>
</tr>
<tr>
<td>13</td>
<td>Not used</td>
</tr>
<tr>
<td>14</td>
<td>Channel 7/8 Out (-)</td>
</tr>
<tr>
<td>15</td>
<td>Channel 5/6 Out (+)</td>
</tr>
<tr>
<td>16</td>
<td>SG</td>
</tr>
<tr>
<td>17</td>
<td>Channel 3/4 Out (-)</td>
</tr>
<tr>
<td>18</td>
<td>Channel 1/2 Out (+)</td>
</tr>
<tr>
<td>19</td>
<td>SG</td>
</tr>
<tr>
<td>20</td>
<td>Channel 7/8 In (-)</td>
</tr>
<tr>
<td>21</td>
<td>Channel 5/6 In (+)</td>
</tr>
<tr>
<td>22</td>
<td>SG</td>
</tr>
<tr>
<td>23</td>
<td>Channel 3/4 In (-)</td>
</tr>
<tr>
<td>24</td>
<td>Channel 1/2 In (+)</td>
</tr>
<tr>
<td>25</td>
<td>SG</td>
</tr>
</tbody>
</table>
CueMix
adjusting bus levels 7
delay compensation 74
menu (LCD display) 97
CueMix FX 77-84
Application follows control surface 83
Configurations menu 82
connections 28
Devices menu 82
Edit menu 81
File menu 81
installing 19
Listenback explained 80
Mackie control surfaces 83
Phones menu 83
Share surfaces with other applications 83
Talkback menu 83
Talkback settings 80
CURS (cursor) button 7, 95
Customer support 103

D
Daisy-chain
FireWire 21
video ref 8, 29
DB25 connectors
AES/EBU 8
analog 8
DB25 XLR cables 26, 27, 109
DDS 13
Deinterlacing 54
Detect Pull-down option 55
Device control 64, 65
Devices menu 55, 82
Digital audio
phase lock 31
synchronization 32
Digital mixer
connecting 27
example 28
synchronizing 32
Direct Digital Synthesis 13
DLP display
connecting 8
Drivers
Legacy MME (Wave) 11
DVCPRO 13
supported formats 66, 105
DVD Player
connecting 25
DVI
cable requirements 24
connector 8, 24
output 24
output menu 42, 43, 47

E
Easy Setups
installing 19
EBU N10 49
Edit to Tape 64
Editing Mode menu (Premiere Pro) 59
Embedded
sync setting 100
time code 49, 100
Embedded audio
HDMI 8, 24
metering 7
SDI input 73, 97
SDI/HDMI output 73, 97
Enable Multi Channel Wave Sync option 11
Enable Video option 50, 71, 100
Export to Tape 65
Factory Defaults 100
Fan 8
Field 1/2 options 54
Filed menu
Clear Peaks 82
Copy/Paste 82
Hardware Follows CueMix Stereo
Settings 81
Load Hardware Preset 81
Peak Hold Time 81
Save Hardware Preset 81
undo/redo 81
Film
1:4:9 letterbox format 44
1:4:9 pillar box format 46
anamorphic format 45, 46
full screen format 45, 46
letterbox format 44
pillar box format 45
FireWire 7
collector 8, 21, 22
daisy-chaining 21
I/O 37
in signal path diagram 47
LED 94
Firmware update 8
Follow Active Mix 83
Force 1x word out rate 30, 75
Format and Genlock option 46, 49, 52
Format conversion
1:4:9 letterbox format 44
1:4:9 pillar box format 46
anamorphic format 45, 46
diagram 42, 43
full screen format 45, 46
letterbox format 44
menu 42, 43, 44, 45, 96
pillar box format 45
up conversion 45, 96
FORMAT LEDs 7, 94
Frame rate
playback 43, 54
Frame rate (Premiere Pro) 61
Fresnel
address 88
clock 87
infinite 87
Front panel 7, 93
programming 39, 91
Full Screen format 45, 46
Gain 98
General tab 11
Genlock
Auto Detect Input Format menu 46, 49
LED (Video Console software) 52
LED (Video Console software) 9, 41, 55
LEDs (front panel) 7, 95
troubleshooting 103
Hardware Follows CueMix Stereo Settings 81
HD
1:4:9 pillar box format 46
anamorphic format 46
camera 25
clock 87
component connectors 8
Component Output Color Mode
settings 23, 51, 96
destinations 42, 43, 47
full screen format 46
Out LED 94
output format 42, 43, 46, 49
pillar box format 45
pull-down insertion/removal 47
reference monitor 25
reference monitor example 25
signal path 42, 43, 53
supported formats 66, 105
tri-level sync 8, 29, 53
up conversion to 45, 96
HDMI
audio enable/disable 11
connector 8, 24
DVI output 24
embedded audio 24
LED 94
output format 42, 43, 47, 96
Output Source setting 47, 51, 96
SDI/HDMI Output menu 73, 97
HD-SDI
audio enable/disable 11
audio metering 7
BNC cable specs 24
connectors 8, 24
LED 94
reference monitor 25
time code destination option 49, 100
VTR input 25
Headphone jack 7
Headphones 7
controlling output 73, 97
Heat
controlling 8
INDEX

supported video formats 15, 66, 105
sync via time code 85
synchronization during playback 53
time code display 7
time code offset 54
time code settings 64
time code sync 85
video connections for 22
video conversion 64
video input 61
Preview Format option 47
Preview mode (Export to Tape) 65
Preview tab 52
Print to Video 64
Programmable meters 7, 11
option 73, 97
Pull-down cadence 47
correction summary 47
explained 47
insertion 47
menu 42, 47
removal 47
Q
Quick reference
MOTU Audio Console 11
MOTU Video Console 9
R
Rate conversion (see Sample rate conversion)
RATE LEDs 7, 95
REF in Bi-level/Tri-level options 53
Reference monitor
connecting 25
Regenerate 88
Registration 17
Reverse pull-down 47
RGB 23, 51, 96
LEDs 94
RS-422
connector 8, 30
setup in Premiere Pro 64, 65
sync option 49, 100
S
S/AMUX 8, 28, 97
Sample rate 11, 70, 97
192kHz operation 71
LEDs 7
Sample rate conversion 27, 28, 33, 73, 97
Premiere Pro 62, 63
Sample Rate Convert menu 11, 73, 97
Samples per buffer 11, 72
Save Hardware Preset 81
Save/Name Preset 99
SD
14:9 letterbox format 44
anamorphic format 45
bi-level sync 53
camcorder 25
component 23, 24
component connectors 8
Component Output Color Mode
settings 23, 51, 96
composite 25
deinterlacing 54
destinations 42, 43, 47
disabled 47, 103
down conversion 64, 92
full screen format 45
letterbox format 44
monitor 25
Out LED 94
output format 42, 43, 46, 49
pull-down insertion/removal 47
signal path 42, 43, 53
supported formats 66, 105
uncompressed 66, 105
up conversion 45, 96
video deck 25
VITC timecode dest option 49
VITC timecode source option 49
SDI
audio enable/disable 11
audio metering 7
BNC cable specs 24
connectors 8, 24
HD-SDI example 25
Input menu 73, 97
Output Timecode Format menu 49
SDI/HDMI Output menu 73, 97
SD-SDI example 25
Timecode Output Format menu 100
SD-SDI
audio enable/disable 11
audio metering 7
BNC cable specs 24
connectors 8, 24
example 25
LED 94
time code destination option 49, 100
Selected Input option 53
Setup tab 48
Share surfaces with other applications 83
SIGNAL LEDs 7, 94
Signal path diagram 42, 53
HDMI output source (SD or HD)
51, 96
Single Field option 54
SMpte
- clock source setting 72
- console 85
- overview 85
- source setting 87
- sync 85
time code display 7
SMpte console 85-88
installing 19
SMpte/EBU N10 24
Soft option (Broadcast Legalizer) 50, 96
Software installation 19
Solo 90
light 79
Sony
9-pin connector 8, 30
9-pin setup in Premiere Pro 64
9-pin sync option 49, 100
Beta Japan option 24, 49
Beta option 24, 49
Source
LEDs 7
Speakers
connecting 28
SRC 27, 28, 33, 73, 97
Standalone
mode 37, 39, 91
LED 94
operation 93
STATUS button 7, 94
Stereo (Premiere Pro) 62
Stereo button 79
Stop Freewheel 87
Stripe button 88
S-video
connectors 8, 22
tests 25
LED 94
Sync CueMix audio with video output option 11, 74, 75, 97
Synchronization
digital audio 31, 32
phase lock 31
playback clock source 53
sample rate conversion 27, 28, 33, 73, 97
video 8, 29
System requirements
minimum 17
recommended computer 17
T
TACH
light (SMpte Console) 86
Talkback
button 77, 81
explained 80
menu 81, 83
Technical support 103
Termination
video ref 8, 29
Thru
video ref 8, 29
word clock 8, 29, 30
Time code
Destination menu 49, 100
display (front panel) 7
lock LED 7
LTC connectors 8
offset 54
output format options 49, 100
Premiere Pro settings 64
Source menu 49, 100
sync 85
Toggle Talkback/Listenback 83
Tri-level sync 8, 29, 53
Troubleshooting 103-104
audio problems 26, 27
basic concepts 37
SD disabled 47, 103
Type I, II optical mode 8, 28, 97

U
Uncompressed LED 94
Uncompressed SD 66, 105
Undo/Redo 81
Up conversion 45, 96
deinterlacing menu 54
Sharpness option 55
USA (7.5%) option 49

V
V4HD
audio only mode 37, 39, 50, 71, 92, 100
basic operation 37
capture mode 37, 38
convert mode 37, 38
frame rate 43
installing 21
playback mode 37, 38
software installation 19
standalone mode 39, 91
summary of features 13
sync during playback 53
tab 11, 70
up conversion 45, 96
Word Clock In setting 71
VALUE/ENTER knob 7, 95
VHS deck
connecting 25
Video
capture mode 37, 38
clock 31
clock setting 71
connections 22, 25
conversion settings 42, 43
convert mode 37, 38
down conversion 63, 92
enabling/disabling video features 50, 71, 100
input (choosing) 37
menu (LCD display) 96
modes 37
output format 46, 49
playback mode 37, 38
clock source 53
pull-down insertion/removal 47
reference during playback 53
source format 43
source menu 23, 37, 43, 44, 96
standalone mode 39, 91
status LEDs 7, 37, 94
supported formats 66, 105
synchronization 8, 29
up conversion 45, 96
Video input (Premiere Pro) 61
VIDEO REF
connectors 8, 29
IN 31, 32
troubleshooting 103
VITC
generating 49
resolving to 49
time code output options 49, 100

W
Wave driver 11
Widescreen
14:9 letterbox format 44
14:9 pillar box format 46
anamorphic format 45, 46
full screen format 45, 46
letterbox format 44
pillar box format 45
Width 79
Windows
hot fix 17
system requirements 17
Wiring diagrams for DB25 cables 109
Word clock
2x or one-half x 30
connectors 8, 29
In setting 71
sync setting 71
thru 30
Word Out menu 11, 75, 97
X
x 2 74
x 4 73, 74
XLR
AES/EBU 8
analog 8
Y
Y/C connectors 22
Y/R-Y/B 24
YCbCr 24
YPbPr 23, 51, 96
LEDs 94
YUV 24

INDEX